girl-logo

Ask Questions

Trigonometry Questions & Answers

Q:
Prove \( \cos (a-b)=\cos (a) \cos (b)+\sin (a) \sin (b) \)
Q:
Simplifique: \( { }^{*} \) \( \mathrm{~K}=\sqrt{3\left(\operatorname{ctg} 60^{\circ}+\operatorname{tg} 27^{\circ}\right)\left(\operatorname{ctg} 60^{\circ}+\operatorname{tg} 33^{\circ}\right)} \) Tu respuesta
Q:
\( \begin{array}{l}\text { Determine para qué valores de } x \in(0,2 \pi) \text { se } \\ \text { cumple: }\end{array} \) \( \left\lvert\, \frac{\cot ^{2}(x)+4}{2 \operatorname{sen}^{2}(x)+5 \operatorname{sen}(x)-3}>0\right. \)
Q:
Sean \( S, C \) y R las medidas en grados sexagesimales, centesimales y radianes de un mismo ángulo, respectivamente. Se cumple que \( (S / 3-C / 5)^{2}-20 R / \pi>0 \). Calcule el menor valor posible (en radianes) para dicho ángulo positivo, sabiendo que \( S \) y C son números enteros.
Q:
Q1. Solve the following equations on the interval \( [0,2 \pi) \). \( \begin{array}{ll}\text { a. } 2 \cos x=1 & \text { b. } \sin (2 x)=\cos (x) \\ \text { Hint: } \operatorname{Recall} \sin (2 x)=2 \sin (x) \cos (x)\end{array} \) \( \begin{array}{ll}\text { c. } \csc ^{2}(x)-4=0 & \text { d. } 2(\tan (x)+3)=5+\tan (x)\end{array} \)
Q:
\( \frac{a}{\operatorname{sen} a}=\frac{b}{\operatorname{sen} \beta}=\frac{c}{\operatorname{sen} \theta} \) La siguiente expresión matemática represent a la a. Ley de cosenos b. Ley de trigonometría c. Ley de senos
Q:
Simplifique la expresión considerando \( \arctan (a) \neq 0 \) \( H=\frac{\operatorname{arcsen}\left(\frac{2 a}{1+a^{2}}\right)+2 \arccos \left(\frac{1-a^{2}}{1+a^{2}}\right)}{\arctan [\operatorname{arccot}(\tan (2 a))-\operatorname{arccot}(\tan (3 a))]} \) Tu respuesta
Q:
Calcule el mayor valor de \( x<360^{\circ}, \quad \) * correspondiente al máximo valor de: V=sen \( (4 x)+\cos (4 x) \). Nota: dar el resultado en grados. Tu respuesta
Q:
It is given that \( \sin x \sin y=\frac{1}{12} \) and \( \cos x \cos y=\frac{3}{4} \) (i) Find the value of \( \cos (x+y) \) and of \( \cos (x-y) \) (ii) Hence, find the acute angles \( x \) and \( y \).
Q:
Simplifique la expresión considerando \( \arctan (\mathrm{a}) \neq 0 \). \( \mathrm{H}=\frac{\operatorname{arcsen}\left(\frac{2 \mathrm{a}}{1+\mathrm{a}^{2}}\right)+2 \arccos \left(\frac{1-\mathrm{a}^{2}}{1+\mathrm{a}^{2}}\right)}{\arctan [\operatorname{arccot}(\tan (2 \mathrm{a}))-\operatorname{arccot}(\tan (3 \mathrm{a}))]} \)

Test your knowledge on Trigonometry!

Select the correct answer and check your answer

13 14 15 16 17 18 19 20 21 22
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic
  • Limited Solutions