Question
upstudy study bank question image url

\( \int _ { 0 } ^ { 3 } ( e ^ { 6 } + \operatorname { In } x ) d x \)

Ask by Ramirez Sherman. in Mexico
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

El resultado de la integral es \( 3e^{6} + 3 \ln 3 - 3 \).

Solution

Para calcular la integral definida: \[ \int_{0}^{3} \left( e^{6} + \ln x \right) \, dx \] seguimos los siguientes pasos: 1. **Integrar cada término por separado:** - \(\int e^{6} \, dx = e^{6} \cdot x\) - \(\int \ln x \, dx = x \ln x - x\) 2. **Evaluar las antiderivadas en los límites de integración (de 0 a 3):** \[ \left[ e^{6} \cdot x + x \ln x - x \right]_{0}^{3} = \left( 3e^{6} + 3 \ln 3 - 3 \right) - \lim_{x \to 0^{+}} \left( 0 + 0 - 0 \right) \] Nota: \(\lim_{x \to 0^{+}} (x \ln x) = 0\), ya que \(x \ln x\) tiende a 0 cuando \(x\) se acerca a 0 por la derecha. 3. **Simplificar el resultado:** \[ 3e^{6} + 3 \ln 3 - 3 \] **Resultado final:** \[ \int_{0}^{3} \left( e^{6} + \ln x \right) \, dx = 3e^{6} + 3 \ln 3 - 3 \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To solve the integral \( \int _ { 0 } ^ { 3 } ( e ^ { 6 } + \operatorname { In } x ) d x \), we can break it into two separate integrals: \[ \int _ { 0 } ^ { 3 } e ^ { 6} \, dx + \int _ { 0 } ^ { 3 } \operatorname{ln} x \, dx \] The first integral is straightforward since \( e^6 \) is a constant: \[ \int _ { 0 } ^ { 3 } e ^ { 6} \, dx = e^6 (3 - 0) = 3 e^6 \] The second integral, \( \int _ { 0 } ^ { 3 } \operatorname{ln} x \, dx \), can be solved using integration by parts. Let \( u = \operatorname{ln} x \) and \( dv = dx \). Then, we have \( du = \frac{1}{x}dx \) and \( v = x \). Applying integration by parts gives: \[ \int \operatorname{ln} x \, dx = x \operatorname{ln} x - \int \frac{x}{x}dx = x \operatorname{ln} x - x + C \] Evaluating this from 0 to 3, we have: \[ \left[ x \operatorname{ln} x - x \right]_{0}^{3} \] Calculating it: When \( x = 3 \): \[ 3 \operatorname{ln} 3 - 3 \] When \( x \to 0 \), \( \operatorname{ln} 0 \) approaches \(-\infty\), so we consider the limit: \[ \lim_{x \to 0^+} \left( x \operatorname{ln} x - x \right) = \lim_{x \to 0^+} (x \operatorname{ln} x) - \lim_{x \to 0^+} x = 0 \] Therefore, \[ \left[ x \operatorname{ln} x - x \right]_{0}^{3} = (3 \operatorname{ln} 3 - 3) - 0 = 3 \operatorname{ln} 3 - 3 \] Now, combine both integrals: \[ 3 e^6 + (3 \operatorname{ln} 3 - 3) = 3 e^6 + 3 \operatorname{ln} 3 - 3 \] Thus, the final answer for the integral is: \[ \int _ { 0 } ^ { 3 } ( e ^ { 6 } + \operatorname { In } x ) d x = 3 e^6 + 3 \operatorname{ln} 3 - 3 \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy