Question
upstudy study bank question image url

Find the anti-derivative. \( \int\left(4 t^{3} \vec{\imath}+6 t \vec{\jmath}-4 \sqrt{t} \vec{k}\right) \mathrm{dt}= \) \( t^{[?]} \vec{\imath}+\left[\quad t^{[\quad]} \vec{\jmath}-\frac{[]}{[\square]} t^{3 / 2} \vec{k}+\vec{C}\right. \)

Ask by Norris Tucker. in the United States
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The anti-derivative is \( t^{4} \vec{\imath} + 3 t^{2} \vec{\jmath} - \frac{8}{3} t^{3/2} \vec{k} + \vec{C} \).

Solution

To find the anti-derivative of the vector function: \[ \int \left(4 t^{3} \vec{\imath} + 6 t \vec{\jmath} - 4 \sqrt{t} \vec{k}\right) \, \mathrm{dt}, \] we integrate each component separately. 1. **For the \(\vec{\imath}\) component:** \[ \int 4 t^3 \, \mathrm{dt} = \frac{4}{4} t^4 = t^4 \] 2. **For the \(\vec{\jmath}\) component:** \[ \int 6 t \, \mathrm{dt} = \frac{6}{2} t^2 = 3 t^2 \] 3. **For the \(\vec{k}\) component:** \[ \int -4 \sqrt{t} \, \mathrm{dt} = \int -4 t^{1/2} \, \mathrm{dt} = -4 \cdot \frac{2}{3} t^{3/2} = -\frac{8}{3} t^{3/2} \] Combining these results and adding the constant of integration \(\vec{C}\), the anti-derivative is: \[ t^{4} \vec{\imath} + 3 t^{2} \vec{\jmath} - \frac{8}{3} t^{3/2} \vec{k} + \vec{C} \] **Final Answer:** \[ t^{4} \vec{\imath} + 3 t^{2} \vec{\jmath} - \frac{8}{3}\, t^{\,3/2} \vec{k} + \vec{C} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To find the anti-derivative, we'll integrate each component separately. 1. For the first component \( 4t^3 \vec{\imath} \), the integral is: \[ \int 4t^3 \, dt = t^4 \cdot 4 / 4 = t^4 \vec{\imath} \] 2. For the second component \( 6t \vec{\jmath} \), the integral is: \[ \int 6t \, dt = t^2 \cdot 6 / 2 = 3t^2 \vec{\jmath} \] 3. For the third component \( -4\sqrt{t} \vec{k} \), we rewrite \( \sqrt{t} \) as \( t^{1/2} \) and compute the integral: \[ \int -4t^{1/2} \, dt = -4 \cdot \frac{t^{3/2}}{3/2} = -\frac{8}{3}t^{3/2} \vec{k} \] Putting it all together, we have: \[ \int\left(4 t^{3} \vec{\imath}+6 t \vec{\jmath}-4 \sqrt{t} \vec{k}\right) \mathrm{dt} = t^{4} \vec{\imath} + 3t^{2} \vec{\jmath} - \frac{8}{3} t^{3/2} \vec{k} + \vec{C} \] Where: \[ t^{[4]} \vec{\imath} + \left[3 t^{[2]} \vec{\jmath} - \frac{8}{3} t^{3/2} \vec{k} + \vec{C}\right] \]

Related Questions

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy