Question
Simplify the function \( f(x)=\frac{1}{3}(81)^{\frac{3 x}{4}} \). Then determine the key aspects of the function. The initial value is The simplified base is The domain is The range is
Ask by Gibbs Wagner. in the United States
Feb 03,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
Simplified Function: \( f(x) = 3^{3x - 1} \)
- **Initial Value:** \( f(0) = \frac{1}{3} \)
- **Simplified Base:** 3
- **Domain:** All real numbers
- **Range:** Positive real numbers
Solution
Let's simplify the function and identify its key aspects step by step.
### Given Function
\[ f(x) = \frac{1}{3} \cdot 81^{\frac{3x}{4}} \]
### 1. Simplifying the Function
**Step 1:** Express 81 as a power of 3.
\[ 81 = 3^4 \]
\[ \therefore f(x) = \frac{1}{3} \cdot (3^4)^{\frac{3x}{4}} \]
**Step 2:** Apply the power of a power rule \((a^m)^n = a^{m \cdot n}\).
\[ f(x) = \frac{1}{3} \cdot 3^{4 \cdot \frac{3x}{4}} \]
\[ f(x) = \frac{1}{3} \cdot 3^{3x} \]
**Step 3:** Combine the coefficients with the same base using the rule \(a^m \cdot a^n = a^{m+n}\).
\[ f(x) = 3^{-1} \cdot 3^{3x} \]
\[ f(x) = 3^{3x - 1} \]
**Simplified Function:**
\[ f(x) = 3^{3x - 1} \]
### 2. Key Aspects of the Function
- **Initial Value:**
The initial value is the value of the function when \(x = 0\).
\[
f(0) = 3^{3(0) - 1} = 3^{-1} = \frac{1}{3}
\]
- **Simplified Base:**
The base of the simplified exponential function is **3**.
- **Domain:**
Exponential functions are defined for all real numbers.
\[
\text{Domain: } (-\infty, \infty)
\]
- **Range:**
Exponential functions with positive bases greater than 1 have outputs that are always positive.
\[
\text{Range: } (0, \infty)
\]
### Summary
- **Simplified Function:**
\[ f(x) = 3^{3x - 1} \]
- **Initial Value:**
\[ f(0) = \frac{1}{3} \]
- **Simplified Base:**
\[ 3 \]
- **Domain:**
\[ (-\infty, \infty) \]
- **Range:**
\[ (0, \infty) \]
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Extra Insights
To simplify \( f(x) = \frac{1}{3} (81)^{\frac{3x}{4}} \), we first express \( 81 \) as a power of \( 3 \): \( 81 = 3^4 \). Therefore, the function can be rewritten as: \[ f(x) = \frac{1}{3} (3^4)^{\frac{3x}{4}} = \frac{1}{3} \cdot 3^{4 \cdot \frac{3x}{4}} = \frac{1}{3} \cdot 3^{3x} = 3^{3x - 1} \] Now, to identify the key aspects of the function: The initial value is \( f(0) = 3^{3(0) - 1} = 3^{-1} = \frac{1}{3} \). The simplified base is \( 3^{3x - 1} \). The domain is all real numbers, \( (-\infty, \infty) \). The range is all positive real numbers, \( (0, \infty) \).