Simplify the function \( f(x)=\frac{1}{3}(81)^{\frac{3 x}{4}} \). Then determine the key aspects of the function. The initial value is The simplified base is The domain is The range is
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To simplify \( f(x) = \frac{1}{3} (81)^{\frac{3x}{4}} \), we first express \( 81 \) as a power of \( 3 \): \( 81 = 3^4 \). Therefore, the function can be rewritten as: \[ f(x) = \frac{1}{3} (3^4)^{\frac{3x}{4}} = \frac{1}{3} \cdot 3^{4 \cdot \frac{3x}{4}} = \frac{1}{3} \cdot 3^{3x} = 3^{3x - 1} \] Now, to identify the key aspects of the function: The initial value is \( f(0) = 3^{3(0) - 1} = 3^{-1} = \frac{1}{3} \). The simplified base is \( 3^{3x - 1} \). The domain is all real numbers, \( (-\infty, \infty) \). The range is all positive real numbers, \( (0, \infty) \).