Question
upstudy study bank question image url

Use reduction formulas to evaluate the integral. \[ \int \sin ^{5}(5 x) d x \]

Ask by Vega Burgess. in the United States
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The integral of \(\sin^{5}(5x)\) with respect to \(x\) is: \[ -\frac{1}{5} \sin^{4}(5x) \cos(5x) - \frac{4}{15} \sin^{2}(5x) \cos(5x) - \frac{8}{75} \cos(5x) + C \] where \(C\) is the constant of integration.

Solution

To evaluate the integral \[ \int \sin^{5}(5x) \, dx, \] we can use the reduction formula for integrals of the form \(\int \sin^n(ax) \, dx\). The reduction formula is given by: \[ \int \sin^n(ax) \, dx = -\frac{1}{n} \sin^{n-1}(ax) \cos(ax) + \frac{n-1}{n} \int \sin^{n-2}(ax) \, dx. \] In our case, \(n = 5\) and \(a = 5\). We can apply the reduction formula step by step. ### Step 1: Apply the Reduction Formula Using the reduction formula: \[ \int \sin^{5}(5x) \, dx = -\frac{1}{5} \sin^{4}(5x) \cos(5x) + \frac{4}{5} \int \sin^{3}(5x) \, dx. \] ### Step 2: Evaluate \(\int \sin^{3}(5x) \, dx\) Now we need to evaluate \(\int \sin^{3}(5x) \, dx\). We can apply the reduction formula again: \[ \int \sin^{3}(5x) \, dx = -\frac{1}{3} \sin^{2}(5x) \cos(5x) + \frac{2}{3} \int \sin(5x) \, dx. \] ### Step 3: Evaluate \(\int \sin(5x) \, dx\) The integral \(\int \sin(5x) \, dx\) can be computed directly: \[ \int \sin(5x) \, dx = -\frac{1}{5} \cos(5x). \] ### Step 4: Substitute Back Now we substitute this back into the equation for \(\int \sin^{3}(5x) \, dx\): \[ \int \sin^{3}(5x) \, dx = -\frac{1}{3} \sin^{2}(5x) \cos(5x) + \frac{2}{3} \left(-\frac{1}{5} \cos(5x)\right). \] This simplifies to: \[ \int \sin^{3}(5x) \, dx = -\frac{1}{3} \sin^{2}(5x) \cos(5x) - \frac{2}{15} \cos(5x). \] ### Step 5: Substitute Back into the Original Integral Now we substitute this result back into the equation for \(\int \sin^{5}(5x) \, dx\): \[ \int \sin^{5}(5x) \, dx = -\frac{1}{5} \sin^{4}(5x) \cos(5x) + \frac{4}{5} \left(-\frac{1}{3} \sin^{2}(5x) \cos(5x) - \frac{2}{15} \cos(5x)\right). \] ### Step 6: Simplify Now we simplify this expression: \[ \int \sin^{5}(5x) \, dx = -\frac{1}{5} \sin^{4}(5x) \cos(5x) - \frac{4}{15} \sin^{2}(5x) \cos(5x) - \frac{8}{75} \cos(5x). \] ### Final Result Thus, the integral evaluates to: \[ \int \sin^{5}(5x) \, dx = -\frac{1}{5} \sin^{4}(5x) \cos(5x) - \frac{4}{15} \sin^{2}(5x) \cos(5x) - \frac{8}{75} \cos(5x) + C, \] where \(C\) is the constant of integration.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To evaluate the integral \( \int \sin^5(5x) \, dx \), we can use a reduction formula for sine integrals. The reduction formula for \( \int \sin^n(x) \, dx \) is given by: \[ \int \sin^n(x) \, dx = -\frac{\sin^{n-1}(x)\cos(x)}{n} + \frac{n-1}{n} \int \sin^{n-2}(x) \, dx \] Let's adapt this to our integral: 1. Set \( n = 5 \) and factor out the constant multiplier from the angle: \[ \int \sin^5(5x) \, dx = \frac{1}{5} \int \sin^5(u) \, du \quad \text{where } u = 5x \text{ and } du = 5dx \] This gives us: \[ = \frac{1}{5} \int \sin^5(u) \, du \] 2. Applying the reduction formula: \[ \int \sin^5(u) \, du = -\frac{\sin^4(u) \cos(u)}{5} + \frac{4}{5} \int \sin^3(u) \, du \] 3. Next, we need \( \int \sin^3(u) \, du \) which can also be evaluated using the reduction formula: \[ \int \sin^3(u) \, du = -\frac{\sin^2(u) \cos(u)}{3} + \frac{2}{3} \int \sin(u) \, du \] 4. The integral \( \int \sin(u) \, du \) is straightforward: \[ \int \sin(u) \, du = -\cos(u) \] 5. Putting it all together: Substitute back into the equation for \( \int \sin^3(u) \, du \): \[ \int \sin^3(u) \, du = -\frac{\sin^2(u) \cos(u)}{3} - \frac{2}{3} \cos(u) \] 6. Now substitute \( \int \sin^3(u) \) into the \( \int \sin^5(u) \): \[ \int \sin^5(u) \, du = -\frac{\sin^4(u) \cos(u)}{5} + \frac{4}{5} \left(-\frac{\sin^2(u) \cos(u)}{3} - \frac{2}{3} \cos(u)\right) \] 7. Now we combine all parts: \[ \int \sin^5(5x) \, dx = \frac{1}{5} \left(-\frac{\sin^4(5x) \cos(5x)}{5} + \frac{4}{5} \left(-\frac{\sin^2(5x) \cos(5x)}{3} - \frac{2}{3} \cos(5x)\right)\right) + C \] This yields the final result involving multiple hyperbolic trigonometric identities and integration by parts. Finally, simplify and remember to substitute back in \( x \) when you finish the integration! And voilà! You've evaluated the integral \( \int \sin^5(5x) \, dx \)!

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy