43. \( \int_{0}^{\pi} f(x) d x \quad \) donde \( f(x)=\left\{\begin{array}{ll}\operatorname{sen} x & \text { si } 0 \leqslant x<\pi / 2 \\ \cos x & \text { si } \pi / 2 \leqslant x \leqslant \pi\end{array}\right. \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Extra Insights
Para resolver la integral \( \int_{0}^{\pi} f(x) \, dx \) donde \( f(x) \) es una función a tramos, primero necesitamos dividir la integral en dos partes, ya que \( f(x) \) cambia en \( x = \frac{\pi}{2} \). 1. Calcular la integral de \( \sin x \) en el intervalo de \( 0 \) a \( \frac{\pi}{2} \): \[ \int_{0}^{\frac{\pi}{2}} \sin x \, dx = [-\cos x]_{0}^{\frac{\pi}{2}} = -\cos\left(\frac{\pi}{2}\right) + \cos(0) = 0 + 1 = 1. \] 2. Calcular la integral de \( \cos x \) en el intervalo de \( \frac{\pi}{2} \) a \( \pi \): \[ \int_{\frac{\pi}{2}}^{\pi} \cos x \, dx = [\sin x]_{\frac{\pi}{2}}^{\pi} = \sin(\pi) - \sin\left(\frac{\pi}{2}\right) = 0 - 1 = -1. \] 3. Ahora, sumamos ambas partes: \[ \int_{0}^{\pi} f(x) \, dx = \int_{0}^{\frac{\pi}{2}} \sin x \, dx + \int_{\frac{\pi}{2}}^{\pi} \cos x \, dx = 1 - 1 = 0. \] Entonces, el resultado de la integral es: \[ \int_{0}^{\pi} f(x) \, dx = 0. \]