Question
upstudy study bank question image url

43. \( \int_{0}^{\pi} f(x) d x \quad \) donde \( f(x)=\left\{\begin{array}{ll}\operatorname{sen} x & \text { si } 0 \leqslant x<\pi / 2 \\ \cos x & \text { si } \pi / 2 \leqslant x \leqslant \pi\end{array}\right. \)

Ask by Flynn Summers. in Colombia
Mar 31,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

L'intégrale de \( f(x) \) de 0 à \( \pi \) est égale à 0.

Solution

Soit \[ \int_{0}^{\pi} f(x) \, dx = \int_{0}^{\frac{\pi}{2}} \sin x \, dx + \int_{\frac{\pi}{2}}^{\pi} \cos x \, dx. \] 1. Calcul de \(\int_{0}^{\frac{\pi}{2}} \sin x \, dx\) : \[ \int \sin x \, dx = -\cos x, \] donc, \[ \int_{0}^{\frac{\pi}{2}} \sin x \, dx = \left[-\cos x\right]_{0}^{\frac{\pi}{2}} = \left[-\cos \frac{\pi}{2}\right] - \left[-\cos 0\right] = (0) - (-1) = 1. \] 2. Calcul de \(\int_{\frac{\pi}{2}}^{\pi} \cos x \, dx\) : \[ \int \cos x \, dx = \sin x, \] donc, \[ \int_{\frac{\pi}{2}}^{\pi} \cos x \, dx = \left[\sin x\right]_{\frac{\pi}{2}}^{\pi} = \sin \pi - \sin \frac{\pi}{2} = 0 - 1 = -1. \] En combinant les deux résultats, nous obtenons : \[ \int_{0}^{\pi} f(x) \, dx = 1 + (-1) = 0. \] La valeur de l'intégrale est donc \(0\).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

Para resolver la integral \( \int_{0}^{\pi} f(x) \, dx \) donde \( f(x) \) es una función a tramos, primero necesitamos dividir la integral en dos partes, ya que \( f(x) \) cambia en \( x = \frac{\pi}{2} \). 1. Calcular la integral de \( \sin x \) en el intervalo de \( 0 \) a \( \frac{\pi}{2} \): \[ \int_{0}^{\frac{\pi}{2}} \sin x \, dx = [-\cos x]_{0}^{\frac{\pi}{2}} = -\cos\left(\frac{\pi}{2}\right) + \cos(0) = 0 + 1 = 1. \] 2. Calcular la integral de \( \cos x \) en el intervalo de \( \frac{\pi}{2} \) a \( \pi \): \[ \int_{\frac{\pi}{2}}^{\pi} \cos x \, dx = [\sin x]_{\frac{\pi}{2}}^{\pi} = \sin(\pi) - \sin\left(\frac{\pi}{2}\right) = 0 - 1 = -1. \] 3. Ahora, sumamos ambas partes: \[ \int_{0}^{\pi} f(x) \, dx = \int_{0}^{\frac{\pi}{2}} \sin x \, dx + \int_{\frac{\pi}{2}}^{\pi} \cos x \, dx = 1 - 1 = 0. \] Entonces, el resultado de la integral es: \[ \int_{0}^{\pi} f(x) \, dx = 0. \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy