Question
upstudy study bank question image url

Use the information given about the angle \( \theta, \cos \theta=-\frac{\sqrt{3}}{3}, \frac{\pi}{2}<\theta<\pi \), to find the exact values of the foliowing. \( \begin{array}{llll}\text { (a) } \sin (2 \theta) & \text { (b) } \cos (2 \theta) & \text { (c) } \sin \frac{\theta}{2} & \text { (d) } \cos \frac{\theta}{2}\end{array} \) (a) \( \sin (2 \theta)=\square \) (Type an exact answer, using radicals as needed.)

Ask by Cook Haynes. in the United States
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( \sin(2\theta) = -\dfrac{2\sqrt{2}}{3} \)

Solution

To find \( \sin(2\theta) \) given that \( \cos \theta = -\frac{\sqrt{3}}{3} \) and \( \frac{\pi}{2} < \theta < \pi \): 1. **Determine \( \sin \theta \):** Since \( \theta \) is in the second quadrant (\( \frac{\pi}{2} < \theta < \pi \)), \( \sin \theta \) is positive. Use the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] \[ \sin^2 \theta = 1 - \cos^2 \theta = 1 - \left(-\frac{\sqrt{3}}{3}\right)^2 = 1 - \frac{3}{9} = \frac{6}{9} = \frac{2}{3} \] \[ \sin \theta = \sqrt{\frac{2}{3}} = \frac{\sqrt{6}}{3} \] 2. **Use the double-angle formula for sine:** \[ \sin(2\theta) = 2 \sin \theta \cos \theta \] \[ \sin(2\theta) = 2 \cdot \frac{\sqrt{6}}{3} \cdot \left(-\frac{\sqrt{3}}{3}\right) = 2 \cdot \frac{-\sqrt{18}}{9} = \frac{-2 \cdot 3\sqrt{2}}{9} = -\frac{2\sqrt{2}}{3} \] **Answer:** Problem a Answer: \(\sin (2 \theta) = -\dfrac{2\,\sqrt{2}}{3}\)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To solve this, we start with the given information where \( \cos \theta = -\frac{\sqrt{3}}{3} \) and \( \frac{\pi}{2} < \theta < \pi \). Since \( \theta \) is in the second quadrant, we can find \( \sin \theta \) using the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1. \] So, \[ \sin^2 \theta + \left(-\frac{\sqrt{3}}{3}\right)^2 = 1, \] \[ \sin^2 \theta + \frac{3}{9} = 1, \] \[ \sin^2 \theta + \frac{1}{3} = 1, \] \[ \sin^2 \theta = 1 - \frac{1}{3} = \frac{2}{3}. \] Since \( \sin \theta \) is positive in the second quadrant, \[ \sin \theta = \sqrt{\frac{2}{3}} = \frac{\sqrt{6}}{3}. \] Now we can find the values: **(a)** To find \( \sin(2\theta) \): \[ \sin(2\theta) = 2\sin \theta \cos \theta = 2 \left( \frac{\sqrt{6}}{3} \right) \left( -\frac{\sqrt{3}}{3} \right) = -\frac{2\sqrt{18}}{9} = -\frac{6\sqrt{2}}{9} = -\frac{2\sqrt{2}}{3}. \] So, (a) \( \sin(2\theta)=-\frac{2\sqrt{2}}{3} \). Now, we can use it to compute \( (b) \cos(2\theta) \), \( (c) \sin(\frac{\theta}{2}) \), and \( (d) \cos(\frac{\theta}{2}) \). **(b)** To find \( \cos(2\theta) \): \[ \cos(2\theta) = \cos^2 \theta - \sin^2 \theta = \left(-\frac{\sqrt{3}}{3}\right)^2 - \left(\frac{\sqrt{6}}{3}\right)^2 = \frac{3}{9} - \frac{6}{9} = -\frac{3}{9} = -\frac{1}{3}. \] (b) \( \cos(2\theta)=-\frac{1}{3} \). **(c)** To find \( \sin(\frac{\theta}{2}) \) using the half-angle formula: \[ \sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 - \cos \theta}{2}} = \sqrt{\frac{1 - \left(-\frac{\sqrt{3}}{3}\right)}{2}} = \sqrt{\frac{1 + \frac{\sqrt{3}}{3}}{2}} = \sqrt{\frac{\frac{3 + \sqrt{3}}{3}}{2}} = \sqrt{\frac{3 + \sqrt{3}}{6}}. \] (c) \( \sin\left(\frac{\theta}{2}\right)=\sqrt{\frac{3 + \sqrt{3}}{6}} \). **(d)** To find \( \cos(\frac{\theta}{2}) \): \[ \cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 + \cos \theta}{2}} = \sqrt{\frac{1 - \frac{\sqrt{3}}{3}}{2}} = \sqrt{\frac{\frac{3 - \sqrt{3}}{3}}{2}} = \sqrt{\frac{3 - \sqrt{3}}{6}}. \] (d) \( \cos\left(\frac{\theta}{2}\right)=\sqrt{\frac{3 - \sqrt{3}}{6}} \). In conclusion, (a) \( \sin(2\theta) = -\frac{2\sqrt{2}}{3} \), (b) \( \cos(2\theta) = -\frac{1}{3} \), (c) \( \sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{3 + \sqrt{3}}{6}} \), (d) \( \cos\left(\frac{\theta}{2}\right) =

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy