Use the information given about the angle \( \theta, \cos \theta=-\frac{\sqrt{3}}{3}, \frac{\pi}{2}<\theta<\pi \), to find the exact values of the foliowing. \( \begin{array}{llll}\text { (a) } \sin (2 \theta) & \text { (b) } \cos (2 \theta) & \text { (c) } \sin \frac{\theta}{2} & \text { (d) } \cos \frac{\theta}{2}\end{array} \) (a) \( \sin (2 \theta)=\square \) (Type an exact answer, using radicals as needed.)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Extra Insights
To solve this, we start with the given information where \( \cos \theta = -\frac{\sqrt{3}}{3} \) and \( \frac{\pi}{2} < \theta < \pi \). Since \( \theta \) is in the second quadrant, we can find \( \sin \theta \) using the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1. \] So, \[ \sin^2 \theta + \left(-\frac{\sqrt{3}}{3}\right)^2 = 1, \] \[ \sin^2 \theta + \frac{3}{9} = 1, \] \[ \sin^2 \theta + \frac{1}{3} = 1, \] \[ \sin^2 \theta = 1 - \frac{1}{3} = \frac{2}{3}. \] Since \( \sin \theta \) is positive in the second quadrant, \[ \sin \theta = \sqrt{\frac{2}{3}} = \frac{\sqrt{6}}{3}. \] Now we can find the values: **(a)** To find \( \sin(2\theta) \): \[ \sin(2\theta) = 2\sin \theta \cos \theta = 2 \left( \frac{\sqrt{6}}{3} \right) \left( -\frac{\sqrt{3}}{3} \right) = -\frac{2\sqrt{18}}{9} = -\frac{6\sqrt{2}}{9} = -\frac{2\sqrt{2}}{3}. \] So, (a) \( \sin(2\theta)=-\frac{2\sqrt{2}}{3} \). Now, we can use it to compute \( (b) \cos(2\theta) \), \( (c) \sin(\frac{\theta}{2}) \), and \( (d) \cos(\frac{\theta}{2}) \). **(b)** To find \( \cos(2\theta) \): \[ \cos(2\theta) = \cos^2 \theta - \sin^2 \theta = \left(-\frac{\sqrt{3}}{3}\right)^2 - \left(\frac{\sqrt{6}}{3}\right)^2 = \frac{3}{9} - \frac{6}{9} = -\frac{3}{9} = -\frac{1}{3}. \] (b) \( \cos(2\theta)=-\frac{1}{3} \). **(c)** To find \( \sin(\frac{\theta}{2}) \) using the half-angle formula: \[ \sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 - \cos \theta}{2}} = \sqrt{\frac{1 - \left(-\frac{\sqrt{3}}{3}\right)}{2}} = \sqrt{\frac{1 + \frac{\sqrt{3}}{3}}{2}} = \sqrt{\frac{\frac{3 + \sqrt{3}}{3}}{2}} = \sqrt{\frac{3 + \sqrt{3}}{6}}. \] (c) \( \sin\left(\frac{\theta}{2}\right)=\sqrt{\frac{3 + \sqrt{3}}{6}} \). **(d)** To find \( \cos(\frac{\theta}{2}) \): \[ \cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 + \cos \theta}{2}} = \sqrt{\frac{1 - \frac{\sqrt{3}}{3}}{2}} = \sqrt{\frac{\frac{3 - \sqrt{3}}{3}}{2}} = \sqrt{\frac{3 - \sqrt{3}}{6}}. \] (d) \( \cos\left(\frac{\theta}{2}\right)=\sqrt{\frac{3 - \sqrt{3}}{6}} \). In conclusion, (a) \( \sin(2\theta) = -\frac{2\sqrt{2}}{3} \), (b) \( \cos(2\theta) = -\frac{1}{3} \), (c) \( \sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{3 + \sqrt{3}}{6}} \), (d) \( \cos\left(\frac{\theta}{2}\right) =