Question
upstudy study bank question image url

4. 19 Du skal nå vise to resultater som kan være verdt å huske, da de dukker op mange sammenhenger. Vis at \( \left(\frac{1}{x}\right)^{\prime}=-\frac{1}{x^{2}} \quad \) b \( (\sqrt{x})^{\prime}=\frac{1}{2 \sqrt{x}} \)

Ask by Kirk Moran. in Norway
Jan 20,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Her er de to derivertene: 1. \( \left( \frac{1}{x} \right)' = -\frac{1}{x^{2}} \) 2. \( (\sqrt{x})' = \frac{1}{2 \sqrt{x}} \) Disse er nyttige å huske for å løse ulike matematiske problemer.

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

The Deep Dive

For å vise at \( \left(\frac{1}{x}\right)^{\prime}=-\frac{1}{x^{2}} \), kan vi starte med å bruke produktregelen. Skriv \( \frac{1}{x} \) som \( x^{-1} \). Deretter bruker vi derivasjonsregelen: \( (x^n)^{\prime} = n \cdot x^{n-1} \). Dermed blir \( (x^{-1})^{\prime} = -1 \cdot x^{-2} = -\frac{1}{x^{2}} \). For \( (\sqrt{x})^{\prime} \), kan vi skrive \( \sqrt{x} \) som \( x^{1/2} \). Bruk så derivasjonsregelen igjen: \( (x^{1/2})^{\prime} = \frac{1}{2} \cdot x^{-\frac{1}{2}} = \frac{1}{2 \sqrt{x}} \). Der har du resultatene!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy