Question
upstudy study bank question image url

2. A particle moves along the curve \[ \begin{array}{l}x=2 t^{2}, \quad y=t^{2}-4 t \quad \text { and } \quad z=3 t-5 \\ \text { where } t \text { is the time. Find the components of its velocity and acceleration at time } t=1 \text {, in the } \\ \text { direction } \hat{i}-3 \hat{j}+2 \hat{k} \text {. } \\ \text { (Nagpur, Summer 200l) Ans. } \frac{8 \sqrt{14}}{7},-\frac{\sqrt{14}}{7}\end{array} \]

Ask by Newton Chambers. in Nigeria
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

At time \( t = 1 \), the velocity component in the direction of \( \mathbf{d} = \mathbf{\hat{i}} - 3\mathbf{\hat{j}} + 2\mathbf{\hat{k}} \) is \( \frac{8\sqrt{14}}{7} \), and the acceleration component in the same direction is \( -\frac{\sqrt{14}}{7} \).

Solution

To determine the components of the particle's velocity and acceleration at time \( t = 1 \) in the direction of the vector \( \mathbf{d} = \mathbf{\hat{i}} - 3\mathbf{\hat{j}} + 2\mathbf{\hat{k}} \), follow these steps: ### 1. **Determine the Position Vector** Given the parametric equations: \[ \begin{cases} x = 2t^2 \\ y = t^2 - 4t \\ z = 3t - 5 \end{cases} \] The position vector \( \mathbf{r}(t) \) is: \[ \mathbf{r}(t) = 2t^2\,\mathbf{\hat{i}} + (t^2 - 4t)\,\mathbf{\hat{j}} + (3t - 5)\,\mathbf{\hat{k}} \] ### 2. **Find the Velocity Vector \( \mathbf{v}(t) \)** Differentiate \( \mathbf{r}(t) \) with respect to time \( t \): \[ \mathbf{v}(t) = \frac{d\mathbf{r}}{dt} = \frac{d}{dt}(2t^2)\,\mathbf{\hat{i}} + \frac{d}{dt}(t^2 - 4t)\,\mathbf{\hat{j}} + \frac{d}{dt}(3t - 5)\,\mathbf{\hat{k}} \] \[ \mathbf{v}(t) = 4t\,\mathbf{\hat{i}} + (2t - 4)\,\mathbf{\hat{j}} + 3\,\mathbf{\hat{k}} \] At \( t = 1 \): \[ \mathbf{v}(1) = 4(1)\,\mathbf{\hat{i}} + (2(1) - 4)\,\mathbf{\hat{j}} + 3\,\mathbf{\hat{k}} = 4\,\mathbf{\hat{i}} - 2\,\mathbf{\hat{j}} + 3\,\mathbf{\hat{k}} \] ### 3. **Find the Acceleration Vector \( \mathbf{a}(t) \)** Differentiate \( \mathbf{v}(t) \) with respect to time \( t \): \[ \mathbf{a}(t) = \frac{d\mathbf{v}}{dt} = \frac{d}{dt}(4t)\,\mathbf{\hat{i}} + \frac{d}{dt}(2t - 4)\,\mathbf{\hat{j}} + \frac{d}{dt}(3)\,\mathbf{\hat{k}} \] \[ \mathbf{a}(t) = 4\,\mathbf{\hat{i}} + 2\,\mathbf{\hat{j}} + 0\,\mathbf{\hat{k}} = 4\,\mathbf{\hat{i}} + 2\,\mathbf{\hat{j}} \] At \( t = 1 \): \[ \mathbf{a}(1) = 4\,\mathbf{\hat{i}} + 2\,\mathbf{\hat{j}} \] ### 4. **Compute the Components in the Direction of \( \mathbf{d} = \mathbf{\hat{i}} - 3\mathbf{\hat{j}} + 2\mathbf{\hat{k}} \)** First, find the unit vector in the direction of \( \mathbf{d} \): \[ \|\mathbf{d}\| = \sqrt{1^2 + (-3)^2 + 2^2} = \sqrt{1 + 9 + 4} = \sqrt{14} \] \[ \mathbf{u} = \frac{\mathbf{d}}{\|\mathbf{d}\|} = \frac{1}{\sqrt{14}}\,\mathbf{\hat{i}} - \frac{3}{\sqrt{14}}\,\mathbf{\hat{j}} + \frac{2}{\sqrt{14}}\,\mathbf{\hat{k}} \] **a. Component of Velocity \( \mathbf{v}(1) \) in the Direction of \( \mathbf{d} \):** \[ \text{Component} = \mathbf{v}(1) \cdot \mathbf{u} = \left(4\,\mathbf{\hat{i}} - 2\,\mathbf{\hat{j}} + 3\,\mathbf{\hat{k}}\right) \cdot \left(\frac{1}{\sqrt{14}}\,\mathbf{\hat{i}} - \frac{3}{\sqrt{14}}\,\mathbf{\hat{j}} + \frac{2}{\sqrt{14}}\,\mathbf{\hat{k}}\right) \] \[ = \frac{4 \times 1 + (-2) \times (-3) + 3 \times 2}{\sqrt{14}} = \frac{4 + 6 + 6}{\sqrt{14}} = \frac{16}{\sqrt{14}} = \frac{16\sqrt{14}}{14} = \frac{8\sqrt{14}}{7} \] **b. Component of Acceleration \( \mathbf{a}(1) \) in the Direction of \( \mathbf{d} \):** \[ \text{Component} = \mathbf{a}(1) \cdot \mathbf{u} = \left(4\,\mathbf{\hat{i}} + 2\,\mathbf{\hat{j}}\right) \cdot \left(\frac{1}{\sqrt{14}}\,\mathbf{\hat{i}} - \frac{3}{\sqrt{14}}\,\mathbf{\hat{j}} + \frac{2}{\sqrt{14}}\,\mathbf{\hat{k}}\right) \] \[ = \frac{4 \times 1 + 2 \times (-3) + 0 \times 2}{\sqrt{14}} = \frac{4 - 6 + 0}{\sqrt{14}} = \frac{-2}{\sqrt{14}} = \frac{-2\sqrt{14}}{14} = -\frac{\sqrt{14}}{7} \] ### **Final Answer** - **Velocity component in the direction \( \mathbf{d} \):** \( \dfrac{8\sqrt{14}}{7} \) - **Acceleration component in the direction \( \mathbf{d} \):** \( -\dfrac{\sqrt{14}}{7} \) These results match the provided answer: \[ \frac{8 \sqrt{14}}{7}, \quad -\frac{\sqrt{14}}{7} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To find the components of the velocity and acceleration of the particle at \( t=1 \), we first compute the velocity \( \mathbf{v}(t) \) by differentiating the position functions with respect to \( t \). The position functions are: \[ x = 2t^2, \quad y = t^2 - 4t, \quad z = 3t - 5. \] Differentiating these: \[ \frac{dx}{dt} = 4t, \quad \frac{dy}{dt} = 2t - 4, \quad \frac{dz}{dt} = 3. \] At \( t = 1 \): \[ \mathbf{v}(1) = \left(4(1), 2(1) - 4, 3\right) = (4, -2, 3). \] Next, for acceleration \( \mathbf{a}(t) \), we differentiate the velocity: \[ \frac{d^2x}{dt^2} = 4, \quad \frac{d^2y}{dt^2} = 2, \quad \frac{d^2z}{dt^2} = 0. \] Thus, the acceleration at any \( t \) is: \[ \mathbf{a}(1) = (4, 2, 0). \] Now, to find these components in the direction of \( \hat{i} - 3 \hat{j} + 2 \hat{k} \), we first normalize the direction vector: \[ \mathbf{d} = \hat{i} - 3\hat{j} + 2\hat{k} \quad \Rightarrow \quad \|\mathbf{d}\| = \sqrt{1^2 + (-3)^2 + 2^2} = \sqrt{1 + 9 + 4} = \sqrt{14}. \] The unit vector \( \mathbf{u} = \frac{1}{\sqrt{14}}(1, -3, 2) \). Now project the velocity and acceleration onto this direction: \[ \mathbf{v}(1) \cdot \mathbf{u} = \frac{1}{\sqrt{14}}(4 - 12 + 6) = \frac{-2}{\sqrt{14}} = -\frac{\sqrt{14}}{7}. \] \[ \mathbf{a}(1) \cdot \mathbf{u} = \frac{1}{\sqrt{14}}(4 + -6 + 0) = \frac{-2}{\sqrt{14}} = -\frac{\sqrt{14}}{7}. \] So the components at \( t = 1 \) in the direction of \( \hat{i} - 3\hat{j} + 2\hat{k} \) are: \[ \frac{8\sqrt{14}}{7} \text{ for velocity and } \frac{-\sqrt{14}}{7} \text{ for acceleration.} \]

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy