2. A particle moves along the curve \[ \begin{array}{l}x=2 t^{2}, \quad y=t^{2}-4 t \quad \text { and } \quad z=3 t-5 \\ \text { where } t \text { is the time. Find the components of its velocity and acceleration at time } t=1 \text {, in the } \\ \text { direction } \hat{i}-3 \hat{j}+2 \hat{k} \text {. } \\ \text { (Nagpur, Summer 200l) Ans. } \frac{8 \sqrt{14}}{7},-\frac{\sqrt{14}}{7}\end{array} \]
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find the components of the velocity and acceleration of the particle at \( t=1 \), we first compute the velocity \( \mathbf{v}(t) \) by differentiating the position functions with respect to \( t \). The position functions are: \[ x = 2t^2, \quad y = t^2 - 4t, \quad z = 3t - 5. \] Differentiating these: \[ \frac{dx}{dt} = 4t, \quad \frac{dy}{dt} = 2t - 4, \quad \frac{dz}{dt} = 3. \] At \( t = 1 \): \[ \mathbf{v}(1) = \left(4(1), 2(1) - 4, 3\right) = (4, -2, 3). \] Next, for acceleration \( \mathbf{a}(t) \), we differentiate the velocity: \[ \frac{d^2x}{dt^2} = 4, \quad \frac{d^2y}{dt^2} = 2, \quad \frac{d^2z}{dt^2} = 0. \] Thus, the acceleration at any \( t \) is: \[ \mathbf{a}(1) = (4, 2, 0). \] Now, to find these components in the direction of \( \hat{i} - 3 \hat{j} + 2 \hat{k} \), we first normalize the direction vector: \[ \mathbf{d} = \hat{i} - 3\hat{j} + 2\hat{k} \quad \Rightarrow \quad \|\mathbf{d}\| = \sqrt{1^2 + (-3)^2 + 2^2} = \sqrt{1 + 9 + 4} = \sqrt{14}. \] The unit vector \( \mathbf{u} = \frac{1}{\sqrt{14}}(1, -3, 2) \). Now project the velocity and acceleration onto this direction: \[ \mathbf{v}(1) \cdot \mathbf{u} = \frac{1}{\sqrt{14}}(4 - 12 + 6) = \frac{-2}{\sqrt{14}} = -\frac{\sqrt{14}}{7}. \] \[ \mathbf{a}(1) \cdot \mathbf{u} = \frac{1}{\sqrt{14}}(4 + -6 + 0) = \frac{-2}{\sqrt{14}} = -\frac{\sqrt{14}}{7}. \] So the components at \( t = 1 \) in the direction of \( \hat{i} - 3\hat{j} + 2\hat{k} \) are: \[ \frac{8\sqrt{14}}{7} \text{ for velocity and } \frac{-\sqrt{14}}{7} \text{ for acceleration.} \]