Find and simplify \[ \frac{(a+h)-f(a)}{h},(h \neq 0) \] for the following function. \[ f(x)=4 x^{2}-2 x+7 \] -2
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Mind Expander
To simplify the expression \(\frac{(a+h) - f(a)}{h}\), we first need to calculate \(f(a)\) for the function \(f(x) = 4x^2 - 2x + 7\). Calculating \(f(a)\): \[ f(a) = 4a^2 - 2a + 7 \] Now, substituting this into the given expression: \[ \frac{(a+h) - f(a)}{h} = \frac{(a+h) - (4a^2 - 2a + 7)}{h} \] Simplifying the numerator: \[ (a + h) - (4a^2 - 2a + 7) = a + h - 4a^2 + 2a - 7 = -4a^2 + 3a + h - 7 \] Now substituting back into the fraction: \[ \frac{-4a^2 + 3a + h - 7}{h} \] This can be separated into two terms: \[ \frac{-4a^2 + 3a - 7}{h} + 1 \] Thus, we rewrite the expression and simplify: \[ \frac{-4a^2 + 3a - 7}{h} + 1 \] Simplifying the final result gives us: \[ \frac{-4a^2 + 3a - 7 + h}{h} \] So, the simplified expression is: \[ \frac{-4a^2 + 3a - 7 + h}{h} \]