Question
upstudy study bank question image url

En los ejercicios 5 a 8, encontrar la solución general de la ecuación diferencial y verificar el resultado mediante derivación. \( \begin{array}{ll}\text { 5. } \frac{d y}{d t}=9 t^{2} & \text { 6. } \frac{d r}{d \theta}=\pi \\ \text { 7. } \frac{d y}{d x}=x^{3 / 2} & \text { 8. } \frac{d y}{d x}=2 x^{-3}\end{array} \)

Ask by Huff Gardner. in Dominican Republic
Jan 18,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Las soluciones generales para las ecuaciones diferenciales 5 a 8 son: 5. \( y(t) = 3 t^{3} + C \) 6. \( r(\theta) = \pi \theta + C \) 7. \( y(x) = \frac{2}{5} x^{5/2} + C \) 8. \( y(x) = -\frac{1}{x^{2}} + C \) donde \( C \) es una constante.

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Bonus Knowledge

Para resolver las ecuaciones diferenciales propuestas, vamos a integrar ambas partes respecto a sus respectivas variables. 5. Dada la ecuación \(\frac{d y}{d t} = 9 t^{2}\): \[ y = \int 9 t^{2} \, dt = 3 t^{3} + C \] donde \(C\) es la constante de integración. Para verificar, derivamos \(y\): \[ \frac{d y}{d t} = \frac{d}{d t}(3 t^{3} + C) = 9 t^{2}, \] confirmando que la solución es correcta. 6. Para \(\frac{d r}{d \theta} = \pi\): \[ r = \int \pi \, d\theta = \pi \theta + C. \] Derivando, obtenemos: \[ \frac{d r}{d \theta} = \frac{d}{d \theta}(\pi \theta + C) = \pi, \] lo que valida la solución. 7. En el caso de \(\frac{d y}{d x} = x^{3/2}\): \[ y = \int x^{3/2} \, dx = \frac{2}{5} x^{5/2} + C. \] Verificando la derivada: \[ \frac{d y}{d x} = \frac{d}{d x}\left(\frac{2}{5} x^{5/2} + C\right) = x^{3/2}, \] lo que confirma la solución. 8. Finalmente, para \(\frac{d y}{d x} = 2 x^{-3}\): \[ y = \int 2 x^{-3} \, dx = -\frac{2}{2} x^{-2} + C = -x^{-2} + C. \] Comprobando, derivamos: \[ \frac{d y}{d x} = \frac{d}{d x}(-x^{-2} + C) = 2 x^{-3}, \] confirmando así la solución. ¡Y ahí lo tienes! Las soluciones generales y sus verificaciones están al día.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy