Question
upstudy study bank question image url

5.5.7 Kalkvann er en mettet løsning av kalsiumhy- droksid, \( \mathrm{Ca}(\mathrm{OH})_{2} \). Ved romtemperatur måles pH til 12,3 i kalkvann. Hva er \( \left[\mathrm{OH}^{-}\right] \)og \( \left[\mathrm{Ca}^{2+}\right] \) i den mettede løsningen?

Ask by Bates Elliott. in Norway
Jan 21,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \left[\mathrm{OH}^{-}\right] = 2{,}0 \times 10^{-2} \, \text{M} \] \[ \left[\mathrm{Ca}^{2+}\right] = 1{,}0 \times 10^{-2} \, \text{M} \]

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

The Deep Dive

For å finne \( \left[\mathrm{OH}^{-}\right] \) i kalkvann, kan vi bruke formelen for pH: 1. Først finner vi \( \left[\mathrm{H}^{+}\right] \) ved å bruke \( \text{pH} = -\log \left[\mathrm{H}^{+}\right] \). Med pH lik 12,3, får vi: \[ \left[\mathrm{H}^{+}\right] = 10^{-12,3} \approx 5,0 \times 10^{-13} \, \text{M}. \] 2. Deretter kan vi bruke forholdet fra vannets ionprodukt \( K_w \) for å finne \( \left[\mathrm{OH}^{-}\right] \): \[ K_w = \left[\mathrm{H}^{+}\right] \times \left[\mathrm{OH}^{-}\right] = 1,0 \times 10^{-14} \, \text{(ved 25 °C)}. \] Så, \[ \left[\mathrm{OH}^{-}\right] = \frac{K_w}{\left[\mathrm{H}^{+}\right]} = \frac{1,0 \times 10^{-14}}{5,0 \times 10^{-13}} \approx 0,0200 \, \text{M}. \] For å finne \( \left[\mathrm{Ca}^{2+}\right] \), siden kalkvann er en mettet løsning av kalsiumhydroksid, kan vi bruke løselighetsproduktet \( K_{sp} \) for \( \mathrm{Ca(OH)_2} \). Typisk er \( K_{sp} \) omtrent \( 5,5 \times 10^{-6} \). Siden \( \mathrm{Ca(OH)_2} \) dissosierer i \( \mathrm{Ca}^{2+} \) og 2 \( \mathrm{OH}^{-} \): \[ K_{sp} = \left[\mathrm{Ca}^{2+}\right]\left[\mathrm{OH}^{-}\right]^2. \] Vi setter inn verdiene: \[ 5,5 \times 10^{-6} = \left[\mathrm{Ca}^{2+}\right](0,0200)^2. \] Løs for \( \left[\mathrm{Ca}^{2+}\right] \): \[ \left[\mathrm{Ca}^{2+}\right] = \frac{5,5 \times 10^{-6}}{(0,0200)^2} \approx 13,75 \times 10^{-3} \, \text{M} = 0,0138 \, \text{M}. \] Dermed er \( \left[\mathrm{OH}^{-}\right] \approx 0,0200 \, \text{M} \) og \( \left[\mathrm{Ca}^{2+}\right] \approx 0,0138 \, \text{M} \).

Related Questions

Latest Chemistry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy