Consider the points \( P(1,5,5) \) and \( Q(7,7,11) \). a. Find \( \overrightarrow{P Q} \) and state your answer in two forms: \( \langle a, b, c\rangle \) and \( a i+b j+c k \). b. Find the magnitude of \( \overrightarrow{P Q} \). c. Find two unit vectors parallel to \( \overrightarrow{P Q} \). a. Find \( \overrightarrow{P Q} \). \( \overrightarrow{P Q}=\langle 6,2,6\rangle=(6) i+(2) j+(6) \mathbf{k} \) b. Find the magnitude of \( \overrightarrow{P Q} \). The magnitude of \( \overrightarrow{P Q} \) is \( 2 \sqrt{19} \). (Type an exact answer, using radicals as needed.) c. Find two unit vectors parallel to \( \overrightarrow{P Q} \). The unit vector in the direction of \( \overrightarrow{P Q} \) is \( \langle\square, \square, \square \). (Type exact answers, using radicals as needed.)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
To solve the questions about the points \( P(1,5,5) \) and \( Q(7,7,11) \), we start with part a. ### a. We have \[ \overrightarrow{P Q} = Q - P = \langle 7-1, 7-5, 11-5 \rangle = \langle 6, 2, 6 \rangle \] This can also be expressed as \[ 6i + 2j + 6k. \] ### b. To find the magnitude of \( \overrightarrow{P Q} \), we use the formula: \[ |\overrightarrow{P Q}| = \sqrt{6^2 + 2^2 + 6^2} = \sqrt{36 + 4 + 36} = \sqrt{76} = 2\sqrt{19}. \] ### c. A unit vector is found by dividing the vector by its magnitude. The unit vector in the direction of \( \overrightarrow{P Q} \) is \[ \hat{u} = \frac{1}{|\overrightarrow{P Q}|} \overrightarrow{P Q} = \frac{1}{2\sqrt{19}} \langle 6, 2, 6 \rangle = \left\langle \frac{6}{2\sqrt{19}}, \frac{2}{2\sqrt{19}}, \frac{6}{2\sqrt{19}} \right\rangle = \left\langle \frac{3}{\sqrt{19}}, \frac{1}{\sqrt{19}}, \frac{3}{\sqrt{19}} \right\rangle. \] For two unit vectors parallel to \( \overrightarrow{P Q} \), we can take the unit vector and its negative: \[ \left\langle \frac{3}{\sqrt{19}}, \frac{1}{\sqrt{19}}, \frac{3}{\sqrt{19}} \right\rangle \quad \text{and} \quad \left\langle -\frac{3}{\sqrt{19}}, -\frac{1}{\sqrt{19}}, -\frac{3}{\sqrt{19}} \right\rangle. \]