Consider the points \( P(1,5,5) \) and \( Q(7,7,11) \). a. Find \( \overrightarrow{P Q} \) and state your answer in two forms: \( \langle a, b, c\rangle \) and \( a i+b j+c k \). b. Find the magnitude of \( \overrightarrow{P Q} \). c. Find two unit vectors parallel to \( \overrightarrow{P Q} \). a. Find \( \overrightarrow{P Q} \). \( \overrightarrow{P Q}=\langle 6,2,6\rangle=(6) i+(2) j+(6) \mathbf{k} \) b. Find the magnitude of \( \overrightarrow{P Q} \). The magnitude of \( \overrightarrow{P Q} \) is \( 2 \sqrt{19} \). (Type an exact answer, using radicals as needed.) c. Find two unit vectors parallel to \( \overrightarrow{P Q} \). The unit vector in the direction of \( \overrightarrow{P Q} \) is \( \langle\square, \square, \square \). (Type exact answers, using radicals as needed.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To solve the questions about the points \( P(1,5,5) \) and \( Q(7,7,11) \), we start with part a. ### a. We have \[ \overrightarrow{P Q} = Q - P = \langle 7-1, 7-5, 11-5 \rangle = \langle 6, 2, 6 \rangle \] This can also be expressed as \[ 6i + 2j + 6k. \] ### b. To find the magnitude of \( \overrightarrow{P Q} \), we use the formula: \[ |\overrightarrow{P Q}| = \sqrt{6^2 + 2^2 + 6^2} = \sqrt{36 + 4 + 36} = \sqrt{76} = 2\sqrt{19}. \] ### c. A unit vector is found by dividing the vector by its magnitude. The unit vector in the direction of \( \overrightarrow{P Q} \) is \[ \hat{u} = \frac{1}{|\overrightarrow{P Q}|} \overrightarrow{P Q} = \frac{1}{2\sqrt{19}} \langle 6, 2, 6 \rangle = \left\langle \frac{6}{2\sqrt{19}}, \frac{2}{2\sqrt{19}}, \frac{6}{2\sqrt{19}} \right\rangle = \left\langle \frac{3}{\sqrt{19}}, \frac{1}{\sqrt{19}}, \frac{3}{\sqrt{19}} \right\rangle. \] For two unit vectors parallel to \( \overrightarrow{P Q} \), we can take the unit vector and its negative: \[ \left\langle \frac{3}{\sqrt{19}}, \frac{1}{\sqrt{19}}, \frac{3}{\sqrt{19}} \right\rangle \quad \text{and} \quad \left\langle -\frac{3}{\sqrt{19}}, -\frac{1}{\sqrt{19}}, -\frac{3}{\sqrt{19}} \right\rangle. \]