Question
upstudy study bank question image url

Let \( f(x)=\frac{x^{2}-2 x-48}{x-8} \). Find a) \( \lim _{x \rightarrow 8} f(x) \), b) \( \operatorname{limim}_{x \rightarrow 0} f(x) \), and \( \left.c\right) \lim _{x \rightarrow-6} f(x) \). a) Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. \( \lim _{x \rightarrow 8} f(x)=\square \) (Simplify your answer.) B. The limit does not exist.

Ask by Weston Tyler. in the United States
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

a) \( \lim _{x \rightarrow 8} f(x) = 14 \) b) \( \lim _{x \rightarrow 0} f(x) = 6 \) c) \( \lim _{x \rightarrow -6} f(x) = 0 \)

Solution

Evaluate the limit by following steps: - step0: Evaluate the limit: \(\lim _{x\rightarrow 0}\left(\frac{x^{2}-2x-48}{x-8}\right)\) - step1: Rewrite the expression: \(\frac{\lim _{x\rightarrow 0}\left(x^{2}-2x-48\right)}{\lim _{x\rightarrow 0}\left(x-8\right)}\) - step2: Calculate: \(\frac{-48}{\lim _{x\rightarrow 0}\left(x-8\right)}\) - step3: Calculate: \(\frac{-48}{-8}\) - step4: Calculate: \(6\) Calculate the limit \( \lim_{x\rightarrow 8} \frac{x^{2}-2 x-48}{x-8} \). Evaluate the limit by following steps: - step0: Evaluate using transformations: \(\lim _{x\rightarrow 8}\left(\frac{x^{2}-2x-48}{x-8}\right)\) - step1: Reduce the fraction: \(\lim _{x\rightarrow 8}\left(x+6\right)\) - step2: Rewrite the expression: \(\lim _{x\rightarrow 8}\left(x\right)+\lim _{x\rightarrow 8}\left(6\right)\) - step3: Calculate: \(8+6\) - step4: Calculate: \(14\) Calculate the limit \( \lim_{x\rightarrow -6} \frac{x^{2}-2 x-48}{x-8} \). Evaluate the limit by following steps: - step0: Evaluate the limit: \(\lim _{x\rightarrow -6}\left(\frac{x^{2}-2x-48}{x-8}\right)\) - step1: Rewrite the expression: \(\frac{\lim _{x\rightarrow -6}\left(x^{2}-2x-48\right)}{\lim _{x\rightarrow -6}\left(x-8\right)}\) - step2: Calculate: \(\frac{0}{\lim _{x\rightarrow -6}\left(x-8\right)}\) - step3: Calculate: \(\frac{0}{-14}\) - step4: Calculate: \(0\) Let's solve the limits step by step. ### a) \( \lim _{x \rightarrow 8} f(x) \) To find this limit, we first substitute \( x = 8 \) into the function: \[ f(8) = \frac{8^{2} - 2 \cdot 8 - 48}{8 - 8} = \frac{64 - 16 - 48}{0} = \frac{0}{0} \] This is an indeterminate form, so we need to simplify the function. We can factor the numerator: \[ x^{2} - 2x - 48 = (x - 8)(x + 6) \] Thus, we can rewrite \( f(x) \): \[ f(x) = \frac{(x - 8)(x + 6)}{x - 8} \] For \( x \neq 8 \), this simplifies to: \[ f(x) = x + 6 \] Now we can find the limit as \( x \) approaches 8: \[ \lim_{x \rightarrow 8} f(x) = 8 + 6 = 14 \] So, the answer is: A. \( \lim _{x \rightarrow 8} f(x) = 14 \) ### b) \( \lim _{x \rightarrow 0} f(x) \) Now we substitute \( x = 0 \): \[ f(0) = \frac{0^{2} - 2 \cdot 0 - 48}{0 - 8} = \frac{-48}{-8} = 6 \] So, the limit is: \[ \lim_{x \rightarrow 0} f(x) = 6 \] ### c) \( \lim _{x \rightarrow -6} f(x) \) Now we substitute \( x = -6 \): \[ f(-6) = \frac{(-6)^{2} - 2 \cdot (-6) - 48}{-6 - 8} = \frac{36 + 12 - 48}{-14} = \frac{0}{-14} = 0 \] So, the limit is: \[ \lim_{x \rightarrow -6} f(x) = 0 \] ### Summary of Results: - a) \( \lim _{x \rightarrow 8} f(x) = 14 \) - b) \( \lim _{x \rightarrow 0} f(x) = 6 \) - c) \( \lim _{x \rightarrow -6} f(x) = 0 \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To find \( \lim_{x \rightarrow 8} f(x) \), we first need to simplify \( f(x) = \frac{x^{2}-2x-48}{x-8} \). Start by factoring the numerator: \[ x^{2} - 2x - 48 = (x - 8)(x + 6) \] So, we can rewrite \( f(x) \) as: \[ f(x) = \frac{(x - 8)(x + 6)}{x - 8} \] for \( x \neq 8 \). This simplifies to: \[ f(x) = x + 6 \] Now, we can compute the limit as \( x \) approaches 8: \[ \lim_{x \rightarrow 8} f(x) = 8 + 6 = 14 \] So, A. \( \lim_{x \rightarrow 8} f(x) = 14 \). Next, we calculate \( \lim_{x \rightarrow 0} f(x) \): Using the simpler form \( f(x) = x + 6 \): \[ \lim_{x \rightarrow 0} f(x) = 0 + 6 = 6 \] Finally, we compute \( \lim_{x \rightarrow -6} f(x) \): Again using the same simplified form: \[ \lim_{x \rightarrow -6} f(x) = -6 + 6 = 0 \] In summary: a) \( \lim_{x \rightarrow 8} f(x) = 14 \) b) \( \lim_{x \rightarrow 0} f(x) = 6 \) c) \( \lim_{x \rightarrow -6} f(x) = 0 \)

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy