Answer
a) \( \lim _{x \rightarrow 8} f(x) = 14 \)
b) \( \lim _{x \rightarrow 0} f(x) = 6 \)
c) \( \lim _{x \rightarrow -6} f(x) = 0 \)
Solution
Evaluate the limit by following steps:
- step0: Evaluate the limit:
\(\lim _{x\rightarrow 0}\left(\frac{x^{2}-2x-48}{x-8}\right)\)
- step1: Rewrite the expression:
\(\frac{\lim _{x\rightarrow 0}\left(x^{2}-2x-48\right)}{\lim _{x\rightarrow 0}\left(x-8\right)}\)
- step2: Calculate:
\(\frac{-48}{\lim _{x\rightarrow 0}\left(x-8\right)}\)
- step3: Calculate:
\(\frac{-48}{-8}\)
- step4: Calculate:
\(6\)
Calculate the limit \( \lim_{x\rightarrow 8} \frac{x^{2}-2 x-48}{x-8} \).
Evaluate the limit by following steps:
- step0: Evaluate using transformations:
\(\lim _{x\rightarrow 8}\left(\frac{x^{2}-2x-48}{x-8}\right)\)
- step1: Reduce the fraction:
\(\lim _{x\rightarrow 8}\left(x+6\right)\)
- step2: Rewrite the expression:
\(\lim _{x\rightarrow 8}\left(x\right)+\lim _{x\rightarrow 8}\left(6\right)\)
- step3: Calculate:
\(8+6\)
- step4: Calculate:
\(14\)
Calculate the limit \( \lim_{x\rightarrow -6} \frac{x^{2}-2 x-48}{x-8} \).
Evaluate the limit by following steps:
- step0: Evaluate the limit:
\(\lim _{x\rightarrow -6}\left(\frac{x^{2}-2x-48}{x-8}\right)\)
- step1: Rewrite the expression:
\(\frac{\lim _{x\rightarrow -6}\left(x^{2}-2x-48\right)}{\lim _{x\rightarrow -6}\left(x-8\right)}\)
- step2: Calculate:
\(\frac{0}{\lim _{x\rightarrow -6}\left(x-8\right)}\)
- step3: Calculate:
\(\frac{0}{-14}\)
- step4: Calculate:
\(0\)
Let's solve the limits step by step.
### a) \( \lim _{x \rightarrow 8} f(x) \)
To find this limit, we first substitute \( x = 8 \) into the function:
\[
f(8) = \frac{8^{2} - 2 \cdot 8 - 48}{8 - 8} = \frac{64 - 16 - 48}{0} = \frac{0}{0}
\]
This is an indeterminate form, so we need to simplify the function. We can factor the numerator:
\[
x^{2} - 2x - 48 = (x - 8)(x + 6)
\]
Thus, we can rewrite \( f(x) \):
\[
f(x) = \frac{(x - 8)(x + 6)}{x - 8}
\]
For \( x \neq 8 \), this simplifies to:
\[
f(x) = x + 6
\]
Now we can find the limit as \( x \) approaches 8:
\[
\lim_{x \rightarrow 8} f(x) = 8 + 6 = 14
\]
So, the answer is:
A. \( \lim _{x \rightarrow 8} f(x) = 14 \)
### b) \( \lim _{x \rightarrow 0} f(x) \)
Now we substitute \( x = 0 \):
\[
f(0) = \frac{0^{2} - 2 \cdot 0 - 48}{0 - 8} = \frac{-48}{-8} = 6
\]
So, the limit is:
\[
\lim_{x \rightarrow 0} f(x) = 6
\]
### c) \( \lim _{x \rightarrow -6} f(x) \)
Now we substitute \( x = -6 \):
\[
f(-6) = \frac{(-6)^{2} - 2 \cdot (-6) - 48}{-6 - 8} = \frac{36 + 12 - 48}{-14} = \frac{0}{-14} = 0
\]
So, the limit is:
\[
\lim_{x \rightarrow -6} f(x) = 0
\]
### Summary of Results:
- a) \( \lim _{x \rightarrow 8} f(x) = 14 \)
- b) \( \lim _{x \rightarrow 0} f(x) = 6 \)
- c) \( \lim _{x \rightarrow -6} f(x) = 0 \)
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution