Question
upstudy study bank question image url

\begin{tabular}{l} \( \frac{3 x^{-1}+y}{x^{-1} y} \times \frac{x}{x}=\frac{3 x^{-1} \cdot x+y \cdot x}{x^{-1} y \cdot x}=\frac{3+x y}{y} \) \\ \hline \end{tabular} These equations have more - Rearrange the equations EXERCISE 2 \( 3 \frac{9^{-1} x^{-2} y^{2}}{\left(3 x y^{-1}\right)^{-3}} \) \( 6 \frac{9^{2 x} \cdot 3^{-2}}{81^{x-1}} \) \( 1 \frac{12 a^{0} b^{3} c^{-1}}{15 a^{-2} b^{5} c^{-3}} \) (4) \( \frac{6\left(x^{2} y\right)^{3}\left(x^{-2} y\right)^{-1}}{3 x^{-3} y^{5}} \) \( 7\left(\frac{x^{2} y^{3}}{z^{-2}}\right)^{-1} \) \( 10 \frac{3^{-2}+3^{0}}{3^{-1}} \) \( 13 \frac{x y}{x^{-2}+y^{-2}} \) \( 16 \frac{\left(3 x^{4}\right)^{2}+\left(2 x^{2}\right)^{4}}{5 \cdot 2^{5} \cdot 2^{-5} \cdot x^{10}} \) \( 5 \frac{\left(2 a^{-1}\right)^{2}}{2\left(a^{2}\right)^{-1}} \) \( 8 \frac{\left(2 a^{-1}\right)^{0}}{2\left(a^{0}\right)^{-1}} \) \( 11(2.3)^{-2}+2.3^{-2} \) \( 14\left(a^{3}+3\right)^{-2} \) (17) \( \frac{\left(8.2^{x+1}\right)\left(4.2^{x-1}\right)}{2^{x-3}} \) (9) \( \frac{a^{-2}+a^{-1}+a^{0}}{a} \) \( 12\left(2^{-1}-5^{-1}\right)^{2} \) (15) \( \frac{3.3^{x}}{3^{x}+3^{x-1}} \) \( 18 \frac{12^{x+1} \cdot 27^{x-2}}{18^{2 x-1}} \) - Factorise by taking out - Solve the remaining ex WORKED EXAMIPLE Solve for \( x: 2^{x}+2^{x+1}= \) SOLUTION \[ \begin{aligned} 2^{x}+2^{x+1} & =24 \\ 2^{x}+2^{x} \cdot 2^{1} & =24 \\ 2^{x}(1+2) & =24 \\ 2^{x}(3) & =24 \\ 2^{x} & =8 \\ 2^{x} & =2^{3} \\ x & =3 \end{aligned} \]

Ask by Harper Carter. in the United States
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Here are the simplified forms of the expressions: 1. \( 9 x y^{-1} \) 2. \( 486 \) 3. \( \frac{4}{5} a^{2} b^{-2} c^{2} \) 4. \( 2 x^{11} y^{-3} \) 5. \( \frac{7 z^{2}}{x^{2} y^{3}} \) 6. \( \frac{100}{3} \) 7. \( 13 \cdot \frac{x^{3} y^{3}}{y^{2}+x^{2}} \) 8. \( 80 x^{-2} \) 9. \( 10 \) 10. \( 4 \) 11. \( \frac{13}{4.9} \) 12. \( 14\left(a^{3}+3\right)^{-2} \)

Solution

Let's break down the problem step by step, focusing on rearranging and simplifying the given expressions. ### Rearranging and Simplifying Expressions 1. **Expression 1:** \[ 3 \frac{9^{-1} x^{-2} y^{2}}{\left(3 x y^{-1}\right)^{-3}} \] - The denominator can be simplified: \[ \left(3 x y^{-1}\right)^{-3} = \frac{1}{(3 x y^{-1})^{3}} = \frac{1}{27 x^{3} y^{-3}} = \frac{y^{3}}{27 x^{3}} \] - Thus, the expression becomes: \[ 3 \cdot \frac{9^{-1} x^{-2} y^{2} \cdot 27 x^{3}}{y^{3}} = 3 \cdot \frac{27 \cdot 9^{-1} \cdot x^{1} \cdot y^{2}}{y^{3}} = 3 \cdot \frac{27}{9} \cdot x^{1} \cdot y^{-1} = 9 x y^{-1} \] 2. **Expression 2:** \[ 6 \frac{9^{2 x} \cdot 3^{-2}}{81^{x-1}} \] - Rewrite \(81\) as \(3^{4}\): \[ 81^{x-1} = (3^{4})^{x-1} = 3^{4(x-1)} = 3^{4x-4} \] - Thus, the expression becomes: \[ 6 \cdot \frac{9^{2x} \cdot 3^{-2}}{3^{4x-4}} = 6 \cdot \frac{(3^{2})^{2x} \cdot 3^{-2}}{3^{4x-4}} = 6 \cdot \frac{3^{4x} \cdot 3^{-2}}{3^{4x-4}} = 6 \cdot 3^{4} = 6 \cdot 81 = 486 \] 3. **Expression 3:** \[ 1 \frac{12 a^{0} b^{3} c^{-1}}{15 a^{-2} b^{5} c^{-3}} \] - Simplifying gives: \[ \frac{12 b^{3} c^{-1}}{15 a^{-2} b^{5} c^{-3}} = \frac{12}{15} \cdot \frac{a^{2} b^{3} c^{2}}{1} = \frac{4}{5} a^{2} b^{-2} c^{2} \] 4. **Expression 4:** \[ \frac{6\left(x^{2} y\right)^{3}\left(x^{-2} y\right)^{-1}}{3 x^{-3} y^{5}} \] - Simplifying gives: \[ \frac{6 \cdot x^{6} y^{3} \cdot y^{-1} x^{2}}{3 x^{-3} y^{5}} = \frac{6 x^{8} y^{2}}{3 x^{-3} y^{5}} = 2 x^{11} y^{-3} \] 5. **Expression 5:** \[ 7\left(\frac{x^{2} y^{3}}{z^{-2}}\right)^{-1} \] - Simplifying gives: \[ 7 \cdot \frac{z^{2}}{x^{2} y^{3}} = \frac{7 z^{2}}{x^{2} y^{3}} \] 6. **Expression 6:** \[ 10 \frac{3^{-2}+3^{0}}{3^{-1}} \] - Simplifying gives: \[ 10 \cdot \frac{\frac{1}{9} + 1}{\frac{1}{3}} = 10 \cdot \frac{\frac{10}{9}}{\frac{1}{3}} = 10 \cdot \frac{10}{3} = \frac{100}{3} \] 7. **Expression 7:** \[ 13 \frac{x y}{x^{-2}+y^{-2}} \] - Simplifying gives: \[ 13 \cdot \frac{x y}{\frac{y^{2}+x^{2}}{x^{2} y^{2}}} = 13 \cdot \frac{x^{3} y^{3}}{y^{2}+x^{2}} \] 8. **Expression 8:** \[ 16 \frac{\left(3 x^{4}\right)^{2}+\left(2 x^{2}\right)^{4}}{5 \cdot 2^{5} \cdot 2^{-5} \cdot x^{10}} \] - Simplifying gives: \[ 16 \cdot \frac{9 x^{8} + 16 x^{8}}{5 \cdot x^{10}} = 16 \cdot \frac{25 x^{8}}{5 x^{10}} = 80 x^{-2} \] 9. **Expression 9:** \[ 5 \frac{\left(2 a^{-1}\right)^{2}}{2\left(a^{2}\right)^{-1}} \] - Simplifying gives: \[ 5 \cdot \frac{4 a^{-2}}{2 a^{-2}} = 10 \] 10. **Expression 10:** \[ 8 \frac{\left(2 a^{-1}\right)^{0}}{2\left(a^{0}\right)^{-1}} \] - Simplifying gives: \[ 8 \cdot \frac{1}{2 \cdot 1} = 4 \] 11. **Expression 11:** \[ 11(2.3)^{-2}+2.3^{-2} \] - Simplifying gives: \[ (11 + 2) \cdot (2.3)^{-2} = 13 \cdot \frac{1}{(2.3)^{2}} = \frac{13}{4.9} \] 12. **Expression 12:** \[ 14\left(a^{3}+3\right)^{-2} \] - This expression remains as is

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

Get ready to flex those math muscles! When rearranging equations like the one given, it's all about applying some algebraic finesse. For instance, merging fractions using a common denominator or simplifying terms is key. Once organized, expressions often reveal factors that can be pulled out, or even lead you directly to solutions more smoothly—like finding hidden treasure in a math maze! Once you've shaken things up with factorization, continue diving into basic algebraic principles to solve for the unknowns. A common mistake is forgetting to apply appropriate operations consistently, especially with negative exponents. Keep those rules in check, like \( a^{-n} = \frac{1}{a^n} \), and you'll sail smoothly through the equations, just like a math superhero!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy