Pregunta
upstudy study bank question image url

\begin{tabular}{l} \( \frac{3 x^{-1}+y}{x^{-1} y} \times \frac{x}{x}=\frac{3 x^{-1} \cdot x+y \cdot x}{x^{-1} y \cdot x}=\frac{3+x y}{y} \) \\ \hline \end{tabular} These equations have more - Rearrange the equations EXERCISE 2 \( 3 \frac{9^{-1} x^{-2} y^{2}}{\left(3 x y^{-1}\right)^{-3}} \) \( 6 \frac{9^{2 x} \cdot 3^{-2}}{81^{x-1}} \) \( 1 \frac{12 a^{0} b^{3} c^{-1}}{15 a^{-2} b^{5} c^{-3}} \) (4) \( \frac{6\left(x^{2} y\right)^{3}\left(x^{-2} y\right)^{-1}}{3 x^{-3} y^{5}} \) \( 7\left(\frac{x^{2} y^{3}}{z^{-2}}\right)^{-1} \) \( 10 \frac{3^{-2}+3^{0}}{3^{-1}} \) \( 13 \frac{x y}{x^{-2}+y^{-2}} \) \( 16 \frac{\left(3 x^{4}\right)^{2}+\left(2 x^{2}\right)^{4}}{5 \cdot 2^{5} \cdot 2^{-5} \cdot x^{10}} \) \( 5 \frac{\left(2 a^{-1}\right)^{2}}{2\left(a^{2}\right)^{-1}} \) \( 8 \frac{\left(2 a^{-1}\right)^{0}}{2\left(a^{0}\right)^{-1}} \) \( 11(2.3)^{-2}+2.3^{-2} \) \( 14\left(a^{3}+3\right)^{-2} \) (17) \( \frac{\left(8.2^{x+1}\right)\left(4.2^{x-1}\right)}{2^{x-3}} \) (9) \( \frac{a^{-2}+a^{-1}+a^{0}}{a} \) \( 12\left(2^{-1}-5^{-1}\right)^{2} \) (15) \( \frac{3.3^{x}}{3^{x}+3^{x-1}} \) \( 18 \frac{12^{x+1} \cdot 27^{x-2}}{18^{2 x-1}} \) - Factorise by taking out - Solve the remaining ex WORKED EXAMIPLE Solve for \( x: 2^{x}+2^{x+1}= \) SOLUTION \[ \begin{aligned} 2^{x}+2^{x+1} & =24 \\ 2^{x}+2^{x} \cdot 2^{1} & =24 \\ 2^{x}(1+2) & =24 \\ 2^{x}(3) & =24 \\ 2^{x} & =8 \\ 2^{x} & =2^{3} \\ x & =3 \end{aligned} \]

Ask by Harper Carter. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the simplified forms of the expressions: 1. \( 9 x y^{-1} \) 2. \( 486 \) 3. \( \frac{4}{5} a^{2} b^{-2} c^{2} \) 4. \( 2 x^{11} y^{-3} \) 5. \( \frac{7 z^{2}}{x^{2} y^{3}} \) 6. \( \frac{100}{3} \) 7. \( 13 \cdot \frac{x^{3} y^{3}}{y^{2}+x^{2}} \) 8. \( 80 x^{-2} \) 9. \( 10 \) 10. \( 4 \) 11. \( \frac{13}{4.9} \) 12. \( 14\left(a^{3}+3\right)^{-2} \)

Solución

Let's break down the problem step by step, focusing on rearranging and simplifying the given expressions. ### Rearranging and Simplifying Expressions 1. **Expression 1:** \[ 3 \frac{9^{-1} x^{-2} y^{2}}{\left(3 x y^{-1}\right)^{-3}} \] - The denominator can be simplified: \[ \left(3 x y^{-1}\right)^{-3} = \frac{1}{(3 x y^{-1})^{3}} = \frac{1}{27 x^{3} y^{-3}} = \frac{y^{3}}{27 x^{3}} \] - Thus, the expression becomes: \[ 3 \cdot \frac{9^{-1} x^{-2} y^{2} \cdot 27 x^{3}}{y^{3}} = 3 \cdot \frac{27 \cdot 9^{-1} \cdot x^{1} \cdot y^{2}}{y^{3}} = 3 \cdot \frac{27}{9} \cdot x^{1} \cdot y^{-1} = 9 x y^{-1} \] 2. **Expression 2:** \[ 6 \frac{9^{2 x} \cdot 3^{-2}}{81^{x-1}} \] - Rewrite \(81\) as \(3^{4}\): \[ 81^{x-1} = (3^{4})^{x-1} = 3^{4(x-1)} = 3^{4x-4} \] - Thus, the expression becomes: \[ 6 \cdot \frac{9^{2x} \cdot 3^{-2}}{3^{4x-4}} = 6 \cdot \frac{(3^{2})^{2x} \cdot 3^{-2}}{3^{4x-4}} = 6 \cdot \frac{3^{4x} \cdot 3^{-2}}{3^{4x-4}} = 6 \cdot 3^{4} = 6 \cdot 81 = 486 \] 3. **Expression 3:** \[ 1 \frac{12 a^{0} b^{3} c^{-1}}{15 a^{-2} b^{5} c^{-3}} \] - Simplifying gives: \[ \frac{12 b^{3} c^{-1}}{15 a^{-2} b^{5} c^{-3}} = \frac{12}{15} \cdot \frac{a^{2} b^{3} c^{2}}{1} = \frac{4}{5} a^{2} b^{-2} c^{2} \] 4. **Expression 4:** \[ \frac{6\left(x^{2} y\right)^{3}\left(x^{-2} y\right)^{-1}}{3 x^{-3} y^{5}} \] - Simplifying gives: \[ \frac{6 \cdot x^{6} y^{3} \cdot y^{-1} x^{2}}{3 x^{-3} y^{5}} = \frac{6 x^{8} y^{2}}{3 x^{-3} y^{5}} = 2 x^{11} y^{-3} \] 5. **Expression 5:** \[ 7\left(\frac{x^{2} y^{3}}{z^{-2}}\right)^{-1} \] - Simplifying gives: \[ 7 \cdot \frac{z^{2}}{x^{2} y^{3}} = \frac{7 z^{2}}{x^{2} y^{3}} \] 6. **Expression 6:** \[ 10 \frac{3^{-2}+3^{0}}{3^{-1}} \] - Simplifying gives: \[ 10 \cdot \frac{\frac{1}{9} + 1}{\frac{1}{3}} = 10 \cdot \frac{\frac{10}{9}}{\frac{1}{3}} = 10 \cdot \frac{10}{3} = \frac{100}{3} \] 7. **Expression 7:** \[ 13 \frac{x y}{x^{-2}+y^{-2}} \] - Simplifying gives: \[ 13 \cdot \frac{x y}{\frac{y^{2}+x^{2}}{x^{2} y^{2}}} = 13 \cdot \frac{x^{3} y^{3}}{y^{2}+x^{2}} \] 8. **Expression 8:** \[ 16 \frac{\left(3 x^{4}\right)^{2}+\left(2 x^{2}\right)^{4}}{5 \cdot 2^{5} \cdot 2^{-5} \cdot x^{10}} \] - Simplifying gives: \[ 16 \cdot \frac{9 x^{8} + 16 x^{8}}{5 \cdot x^{10}} = 16 \cdot \frac{25 x^{8}}{5 x^{10}} = 80 x^{-2} \] 9. **Expression 9:** \[ 5 \frac{\left(2 a^{-1}\right)^{2}}{2\left(a^{2}\right)^{-1}} \] - Simplifying gives: \[ 5 \cdot \frac{4 a^{-2}}{2 a^{-2}} = 10 \] 10. **Expression 10:** \[ 8 \frac{\left(2 a^{-1}\right)^{0}}{2\left(a^{0}\right)^{-1}} \] - Simplifying gives: \[ 8 \cdot \frac{1}{2 \cdot 1} = 4 \] 11. **Expression 11:** \[ 11(2.3)^{-2}+2.3^{-2} \] - Simplifying gives: \[ (11 + 2) \cdot (2.3)^{-2} = 13 \cdot \frac{1}{(2.3)^{2}} = \frac{13}{4.9} \] 12. **Expression 12:** \[ 14\left(a^{3}+3\right)^{-2} \] - This expression remains as is

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Get ready to flex those math muscles! When rearranging equations like the one given, it's all about applying some algebraic finesse. For instance, merging fractions using a common denominator or simplifying terms is key. Once organized, expressions often reveal factors that can be pulled out, or even lead you directly to solutions more smoothly—like finding hidden treasure in a math maze! Once you've shaken things up with factorization, continue diving into basic algebraic principles to solve for the unknowns. A common mistake is forgetting to apply appropriate operations consistently, especially with negative exponents. Keep those rules in check, like \( a^{-n} = \frac{1}{a^n} \), and you'll sail smoothly through the equations, just like a math superhero!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad