Question
upstudy study bank question image url

Un trapezio ha l'area di \( 378 \mathrm{~cm}^{2} \) e l'altezza Ii 14 cm . Calcola l'area del quadrato vente il lato congruente a \( 2 / 3 \) della omma delle basi del trapezio. \( \quad \) [1296 cm

Ask by Paul Chan. in Italy
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

L'area del quadrato è \( 1296 \, \text{cm}^2 \).

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Beyond the Answer

Per calcolare l'area del quadrato, dobbiamo prima trovare la somma delle basi del trapezio. L'area del trapezio è data dalla formula \( A = \frac{(b_1 + b_2) \cdot h}{2} \). Abbiamo l'area \( A = 378 \mathrm{~cm}^{2} \) e l'altezza \( h = 14 \mathrm{~cm} \). Risolvendo per \( b_1 + b_2 \), otteniamo: \[ b_1 + b_2 = \frac{2 \cdot A}{h} = \frac{2 \cdot 378}{14} = 54 \mathrm{~cm} \] Ora possiamo determinare il lato del quadrato: \( \text{lato} = \frac{2}{3}(b_1 + b_2) = \frac{2}{3} \cdot 54 = 36 \mathrm{~cm} \). L'area del quadrato è quindi \( \text{Area} = \text{lato}^2 = 36^2 = 1296 \mathrm{~cm}^{2} \). Voilà! Se hai qualche altro dubbio sui trapezi o quadrati, chiedi pure!

Related Questions

Latest Geometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy