Question
Determina las siguientes derivadas utilizando la notación \( \frac{d y}{d x} \). 1. \( \boldsymbol{g}(\boldsymbol{x})=8 x^{2}+5 x+6 \) \[ \frac{d g}{d x}= \] 2. \( \boldsymbol{y}=-\frac{1}{9} x^{3}-7 x-11 \) \[ \frac{d y}{d x}= \] 3. \( \boldsymbol{h}(\boldsymbol{x})=4-\frac{2}{x} \) \[ \frac{d h}{d x}= \] 4. \( \boldsymbol{f}(\boldsymbol{x})=\left(x-3 x^{3}\right)^{5} \) \[ \frac{d f}{d x}= \]
Ask by Murray Wood. in Mexico
Jan 24,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
Las derivadas son:
1. \( \frac{d g}{d x} = 16x + 5 \)
2. \( \frac{d y}{d x} = -\frac{1}{3}x^{2} - 7 \)
3. \( \frac{d h}{d x} = \frac{2}{x^{2}} \)
4. \( \frac{d f}{d x} = 5 \left( x - 3x^{3} \right)^{4} \left( 1 - 9x^{2} \right) \)
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Unlock
Reviewed and approved by the UpStudy tutoring team
Like
Mind Expander
Claro, aquí están las derivadas utilizando la notación \( \frac{dy}{dx} \): 1. Para \( g(x) = 8x^2 + 5x + 6 \): \[ \frac{dg}{dx} = 16x + 5 \] 2. Para \( y = -\frac{1}{9}x^3 - 7x - 11 \): \[ \frac{dy}{dx} = -\frac{1}{3}x^2 - 7 \] 3. Para \( h(x) = 4 - \frac{2}{x} \): \[ \frac{dh}{dx} = \frac{2}{x^2} \] 4. Para \( f(x) = (x - 3x^3)^5 \): Usando la regla de la cadena y la regla del producto: \[ \frac{df}{dx} = 5(x - 3x^3)^4 \left(1 - 9x^2\right) \]