Question
upstudy study bank question image url

Resuelva \( s^{\prime \prime}(t)=-32, s^{\prime}(0)=v_{0}, s(0)=S_{0} \)

Ask by Lee Gardner. in Puerto Rico
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La solución es \( s(t) = -16t^{2} + v_{0}t + S_{0} \).

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

The Deep Dive

La ecuación diferencial dada, \( s^{\prime \prime}(t) = -32 \), representa la aceleración de un objeto en caída libre cerca de la superficie terrestre, donde la aceleración debido a la gravedad es aproximadamente \( 32 \, \text{ft/s}^2 \) (en pies). Para resolverla, comenzamos integrando la ecuación dos veces. La primera integración nos da: \[ s^{\prime}(t) = -32t + C_1 \] Donde \( C_1 \) es una constante de integración que se determina usando la condición inicial \( s^{\prime}(0) = v_0 \): \[ s^{\prime}(0) = C_1 = v_0 \] Entonces, nuestra ecuación queda como: \[ s^{\prime}(t) = -32t + v_0 \] Ahora, integramos nuevamente para obtener \( s(t) \): \[ s(t) = -16t^2 + v_0 t + C_2 \] Usamos la condición inicial \( s(0) = S_0 \) para determinar \( C_2 \): \[ s(0) = C_2 = S_0 \] Finalmente, la solución completa es: \[ s(t) = -16t^2 + v_0t + S_0 \] Esto nos da la posición del objeto en cualquier tiempo \( t \) en función de su velocidad inicial \( v_0 \) y su posición inicial \( S_0 \).

Related Questions

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy