Question
\( y=f(\{u\}) \) Find derivative \( \frac{d y}{d x} \) \( y=\frac{1}{(1+\tan x)^{2}} \)
Ask by Schwartz Harrington. in Pakistan
Nov 30,2024
Real Tutor Solution
Tutor-Verified Answer
Answer
The derivative \( \frac{dy}{dx} \) is \( -\frac{2 \sec^2 x}{(1 + \tan x)^3} \).
Solution
To find the derivative \( \frac{dy}{dx} \) for the function \( y = \frac{1}{(1 + \tan x)^2} \), we can use the chain rule and the quotient rule.
First, let's rewrite the function for clarity:
\[
y = (1 + \tan x)^{-2}
\]
Now, we will differentiate \( y \) with respect to \( x \):
1. **Differentiate using the chain rule**:
\[
\frac{dy}{dx} = -2(1 + \tan x)^{-3} \cdot \frac{d}{dx}(1 + \tan x)
\]
2. **Differentiate \( 1 + \tan x \)**:
\[
\frac{d}{dx}(1 + \tan x) = \sec^2 x
\]
3. **Substituting back into the derivative**:
\[
\frac{dy}{dx} = -2(1 + \tan x)^{-3} \cdot \sec^2 x
\]
4. **Rewriting the expression**:
\[
\frac{dy}{dx} = -\frac{2 \sec^2 x}{(1 + \tan x)^3}
\]
Thus, the derivative \( \frac{dy}{dx} \) is:
\[
\frac{dy}{dx} = -\frac{2 \sec^2 x}{(1 + \tan x)^3}
\]
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Extra Insights
To find the derivative \(\frac{dy}{dx}\) for the function \(y = \frac{1}{(1+\tan x)^{2}}\), we can use the chain rule and the quotient rule. First, rewrite \(y\) as \((1+\tan x)^{-2}\). Applying the chain rule, we get: \[ \frac{dy}{dx} = -2(1+\tan x)^{-3} \cdot \sec^2 x \] This simplifies to: \[ \frac{dy}{dx} = -\frac{2 \sec^2 x}{(1+\tan x)^{3}} \] So, the final expression for the derivative is: \[ \frac{dy}{dx} = -\frac{2 \sec^2 x}{(1+\tan x)^{3}} \]