Question
Ex. 3 : Évaluer les limites suiv a) \( \lim _{x \rightarrow 2} \frac{\sqrt{2}-\sqrt{x}}{x^{2}-3 x+2} \)
Ask by Ruiz Hodgson. in Canada
Oct 26,2024
Real Tutor Solution
Tutor-Verified Answer
Answer
La limite de l'expression est \( -\frac{\sqrt{2}}{4} \).
Solution
Calculate the limit \( \lim _{x \rightarrow 2} \frac{\sqrt{2}-\sqrt{x}}{x^{2}-3 x+2} \).
Evaluate the limit by following steps:
- step0: Evaluate using transformations:
\(\lim _{x\rightarrow 2}\left(\frac{\sqrt{2}-\sqrt{x}}{x^{2}-3x+2}\right)\)
- step1: Multiply by the Conjugate:
\(\lim _{x\rightarrow 2}\left(\frac{1}{\left(\sqrt{2}+\sqrt{x}\right)\left(-x+1\right)}\right)\)
- step2: Rewrite the expression:
\(\frac{\lim _{x\rightarrow 2}\left(1\right)}{\lim _{x\rightarrow 2}\left(\left(\sqrt{2}+\sqrt{x}\right)\left(-x+1\right)\right)}\)
- step3: Evaluate:
\(\frac{1}{\lim _{x\rightarrow 2}\left(\left(\sqrt{2}+\sqrt{x}\right)\left(-x+1\right)\right)}\)
- step4: Evaluate:
\(\frac{1}{-2\sqrt{2}}\)
- step5: Rewrite the fraction:
\(-\frac{1}{2\sqrt{2}}\)
- step6: Multiply by the Conjugate:
\(\frac{-\sqrt{2}}{2\sqrt{2}\times \sqrt{2}}\)
- step7: Multiply the numbers:
\(\frac{-\sqrt{2}}{4}\)
- step8: Calculate:
\(-\frac{\sqrt{2}}{4}\)
La limite de l'expression \( \lim _{x \rightarrow 2} \frac{\sqrt{2}-\sqrt{x}}{x^{2}-3 x+2} \) est égale à \( -\frac{\sqrt{2}}{4} \).
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution