Question
upstudy study bank question image url

Ex. 3 : Évaluer les limites suiv a) \( \lim _{x \rightarrow 2} \frac{\sqrt{2}-\sqrt{x}}{x^{2}-3 x+2} \)

Ask by Ruiz Hodgson. in Canada
Oct 26,2024

Real Tutor Solution

Tutor-Verified Answer

Answer

La limite de l'expression est \( -\frac{\sqrt{2}}{4} \).

Solution

Calculate the limit \( \lim _{x \rightarrow 2} \frac{\sqrt{2}-\sqrt{x}}{x^{2}-3 x+2} \). Evaluate the limit by following steps: - step0: Evaluate using transformations: \(\lim _{x\rightarrow 2}\left(\frac{\sqrt{2}-\sqrt{x}}{x^{2}-3x+2}\right)\) - step1: Multiply by the Conjugate: \(\lim _{x\rightarrow 2}\left(\frac{1}{\left(\sqrt{2}+\sqrt{x}\right)\left(-x+1\right)}\right)\) - step2: Rewrite the expression: \(\frac{\lim _{x\rightarrow 2}\left(1\right)}{\lim _{x\rightarrow 2}\left(\left(\sqrt{2}+\sqrt{x}\right)\left(-x+1\right)\right)}\) - step3: Evaluate: \(\frac{1}{\lim _{x\rightarrow 2}\left(\left(\sqrt{2}+\sqrt{x}\right)\left(-x+1\right)\right)}\) - step4: Evaluate: \(\frac{1}{-2\sqrt{2}}\) - step5: Rewrite the fraction: \(-\frac{1}{2\sqrt{2}}\) - step6: Multiply by the Conjugate: \(\frac{-\sqrt{2}}{2\sqrt{2}\times \sqrt{2}}\) - step7: Multiply the numbers: \(\frac{-\sqrt{2}}{4}\) - step8: Calculate: \(-\frac{\sqrt{2}}{4}\) La limite de l'expression \( \lim _{x \rightarrow 2} \frac{\sqrt{2}-\sqrt{x}}{x^{2}-3 x+2} \) est égale à \( -\frac{\sqrt{2}}{4} \).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy