Question
upstudy study bank question image url

4.2 Hence calculate the value of \( \tan 75^{\circ} \) without using a calculato

Ask by Savage Smith. in South Africa
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( \tan 75^{\circ} = 2 + \sqrt{3} \)

Solution

To calculate \( \tan 75^{\circ} \) without using a calculator, we can use the **tangent addition formula**. Here's a step-by-step breakdown: ### Step 1: Express \( 75^{\circ} \) as a Sum of Known Angles We can write: \[ 75^{\circ} = 45^{\circ} + 30^{\circ} \] ### Step 2: Apply the Tangent Addition Formula The tangent addition formula is: \[ \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \] Applying this to \( A = 45^{\circ} \) and \( B = 30^{\circ} \): \[ \tan(75^{\circ}) = \frac{\tan(45^{\circ}) + \tan(30^{\circ})}{1 - \tan(45^{\circ}) \tan(30^{\circ})} \] ### Step 3: Substitute Known Values We know that: \[ \tan(45^{\circ}) = 1 \quad \text{and} \quad \tan(30^{\circ}) = \frac{1}{\sqrt{3}} \] Substituting these values in: \[ \tan(75^{\circ}) = \frac{1 + \frac{1}{\sqrt{3}}}{1 - 1 \cdot \frac{1}{\sqrt{3}}} = \frac{\sqrt{3} + 1}{\sqrt{3} - 1} \] ### Step 4: Rationalize the Denominator To simplify \( \frac{\sqrt{3} + 1}{\sqrt{3} - 1} \), multiply the numerator and the denominator by the conjugate \( \sqrt{3} + 1 \): \[ \frac{\sqrt{3} + 1}{\sqrt{3} - 1} \times \frac{\sqrt{3} + 1}{\sqrt{3} + 1} = \frac{(\sqrt{3} + 1)^2}{(\sqrt{3})^2 - (1)^2} = \frac{3 + 2\sqrt{3} + 1}{3 - 1} = \frac{4 + 2\sqrt{3}}{2} = 2 + \sqrt{3} \] ### Final Answer \[ \tan 75^{\circ} = 2 + \sqrt{3} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To find \( \tan 75^{\circ} \), we can use the angle sum formula for tangent: \[ \tan(a + b) = \frac{\tan a + \tan b}{1 - \tan a \tan b} \] Here, we can express \( 75^{\circ} \) as \( 45^{\circ} + 30^{\circ} \). So, let’s denote: \[ a = 45^{\circ} \quad \text{and} \quad b = 30^{\circ} \] We know that: \[ \tan 45^{\circ} = 1 \quad \text{and} \quad \tan 30^{\circ} = \frac{1}{\sqrt{3}} \] Now, substituting these values in: \[ \tan 75^{\circ} = \frac{\tan 45^{\circ} + \tan 30^{\circ}}{1 - \tan 45^{\circ} \tan 30^{\circ}} = \frac{1 + \frac{1}{\sqrt{3}}}{1 - 1 \cdot \frac{1}{\sqrt{3}}} \] This simplifies to: \[ \tan 75^{\circ} = \frac{1 + \frac{1}{\sqrt{3}}}{1 - \frac{1}{\sqrt{3}}} = \frac{\frac{\sqrt{3} + 1}{\sqrt{3}}}{\frac{\sqrt{3} - 1}{\sqrt{3}}} = \frac{\sqrt{3} + 1}{\sqrt{3} - 1} \] To further simplify it, we can multiply the numerator and denominator by \( \sqrt{3} + 1 \): \[ \tan 75^{\circ} = \frac{(\sqrt{3} + 1)^2}{(\sqrt{3} - 1)(\sqrt{3} + 1)} = \frac{3 + 2\sqrt{3} + 1}{3 - 1} = \frac{4 + 2\sqrt{3}}{2} = 2 + \sqrt{3} \] So, the value of \( \tan 75^{\circ} \) is \( 2 + \sqrt{3} \).

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy