Question
upstudy study bank question image url

\( \frac { \lim ( x ^ { 2 } - 3 x + 5 ) } { x 2 } \)

Ask by Mullins Page. in Mexico
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

El límite de la expresión \( \frac { \lim ( x ^ { 2 } - 3 x + 5 ) } { x 2 } \) es infinito.

Solution

Para encontrar el límite de la expresión dada, primero necesitamos evaluar la expresión dentro del límite. La expresión dada es \( \frac { \lim ( x ^ { 2 } - 3 x + 5 ) } { x 2 } \). Para evaluar el límite, podemos sustituir \( x \) por un valor específico que se acerque a cero. En este caso, podemos sustituir \( x \) por \( 0 \) para evaluar el límite. Sustituyendo \( x = 0 \) en la expresión dada, obtenemos: \( \frac { \lim ( 0 ^ { 2 } - 3 \cdot 0 + 5 ) } { 0 2 } \) Simplificando la expresión, tenemos: \( \frac { \lim ( 0 - 0 + 5 ) } { 0 2 } \) \( \frac { \lim ( 5 ) } { 0 2 } \) \( \frac { 5 } { 0 2 } \) \( \frac { 5 } { 0 } \) El límite de la expresión dada es infinito, ya que la división por cero no está definida en el conjunto de números reales.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To solve \( \frac{\lim_{x \to a} (x^2 - 3x + 5)}{x^2} \), we first need to clarify the limit's behavior as \( x \) approaches a specific value. Let's say we look at the limit as \( x \to 0 \) for simplicity. Plugging \( x = 0 \) into the numerator gives us \( 0^2 - 3(0) + 5 = 5 \). The denominator \( x^2 \) at \( x = 0 \) is also \( 0 \), which creates a \( \frac{5}{0} \) scenario. This indicates that the expression approaches infinity, pointing to a vertical asymptote at \( x = 0 \). For more complex approaches, one could apply L'Hôpital's Rule if both the numerator and denominator yield \( 0 \) or \( \pm \infty \), but in our simple example, this isn't necessary! Just remember when evaluating limits involving quadratics and polynomials, the key is the behavior as \( x \) approaches your target value.

Related Questions

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy