Question
upstudy study bank question image url

6. (6 boda) Provjerite da je vektorsko polje \( \vec{F}(x, y, z)=\left(z^{2}, z, 2 x z+y\right) \) konzervativno, nađite mu potencijal i pomoću njega izračunajte \( \int_{(1,1,1,2)}^{(2,1,3)} \vec{F} d \vec{r} \).

Ask by Marshall Schmidt. in Croatia
Jan 21,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Vektorsko polje \( \vec{F}(x, y, z) = \left(z^{2}, z, 2xz + y\right) \) je konzervativno. Potencijalna funkcija je \( \phi(x, y, z) = z^{2}x + z y \). Vrijednost linijskog integrala od točke \( (1,1,1) \) do \( (2,1,3) \) je **19**.

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Bonus Knowledge

Da bismo provjerili je li vektorsko polje \(\vec{F}(x, y, z)=\left(z^{2}, z, 2 x z+y\right)\) konzervativno, trebamo provjeriti je li njegovo rotaciono polje jednako nuli. Izračunavamo \(\nabla \times \vec{F}\): \[ \nabla \times \vec{F} = \left( \frac{\partial}{\partial y}(2xz + y) - \frac{\partial}{\partial z}(z) , \frac{\partial}{\partial z}(z^{2}) - \frac{\partial}{\partial x}(2xz + y), \frac{\partial}{\partial x}(z) - \frac{\partial}{\partial y}(z^{2}) \right). \] Nakon izračuna, dobijamo da je \(\nabla \times \vec{F} = \vec{0}\), što znači da je \(\vec{F}\) konzervativno polje. Sada pronalazimo potencijal \(V(x,y,z)\) tako da \(\vec{F} = -\nabla V\). Integrirajući komponente \(\vec{F}\) redom, dolazimo do: \[ V(x,y,z) = -\left(z^2 + yz + xz^2\right) + C, \] gdje je C konstanta integracije. Za izračun integral \(\int_{(1,1,1)}^{(2,1,3)} \vec{F} \cdot d\vec{r}\) možemo koristiti teorem potencijala: \[ \int_{(1,1,1)}^{(2,1,3)} \vec{F} \cdot d\vec{r} = V(2,1,3) - V(1,1,1). \] Izračunavajući \(V\) na tim točkama, dolazimo do rezultata.

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy