Question
upstudy study bank question image url

a) \( \int_{1}^{2} \frac{4 x^{5}-3 x^{4}+x^{3}-1}{x^{2}} d x \)

Ask by Garrett Powell. in Russia
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Интеграл равен 9.

Solution

Calculate or simplify the expression \( \int_{1}^{2} \frac{4x^5-3x^4+x^3-1}{x^2} dx \). Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int_{1}^{2} \frac{4x^{5}-3x^{4}+x^{3}-1}{x^{2}} dx\) - step1: Evaluate the integral: \(\int \frac{4x^{5}-3x^{4}+x^{3}-1}{x^{2}} dx\) - step2: Rewrite the fraction: \(\int \left(4x^{3}-3x^{2}+x-\frac{1}{x^{2}}\right) dx\) - step3: Use properties of integrals: \(\int \left(4x^{3}-3x^{2}+x\right) dx+\int -\frac{1}{x^{2}} dx\) - step4: Evaluate the integral: \(x^{4}-x^{3}+\frac{x^{2}}{2}+\int -\frac{1}{x^{2}} dx\) - step5: Evaluate the integral: \(x^{4}-x^{3}+\frac{x^{2}}{2}+\frac{1}{x}\) - step6: Return the limits: \(\left(x^{4}-x^{3}+\frac{x^{2}}{2}+\frac{1}{x}\right)\bigg |_{1}^{2}\) - step7: Calculate the value: \(9\) Интеграл \( \int_{1}^{2} \frac{4x^{5}-3x^{4}+x^{3}-1}{x^{2}} dx \) равен 9.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To evaluate the integral \( \int_{1}^{2} \frac{4 x^{5}-3 x^{4}+x^{3}-1}{x^{2}} d x \), we can first simplify the integrand by dividing each term in the numerator by \( x^{2} \): \[ \int_{1}^{2} \left( 4x^{3} - 3x^{2} + x - \frac{1}{x^{2}} \right) dx. \] Now, we can integrate each term separately: 1. \( \int 4x^{3} dx = x^{4} + C \) 2. \( \int -3x^{2} dx = -x^{3} + C \) 3. \( \int x dx = \frac{x^{2}}{2} + C \) 4. \( \int -\frac{1}{x^{2}} dx = \frac{1}{x} + C \) Putting it all together, we have: \[ \int \left( 4x^{3} - 3x^{2} + x - \frac{1}{x^{2}} \right) dx = x^{4} - x^{3} + \frac{x^{2}}{2} + \frac{1}{x} + C. \] Now we evaluate this from \( x = 1 \) to \( x = 2 \): \[ \left[ x^{4} - x^{3} + \frac{x^{2}}{2} + \frac{1}{x} \right]_{1}^{2}. \] Calculating at \( x = 2 \): \[ 2^{4} - 2^{3} + \frac{2^{2}}{2} + \frac{1}{2} = 16 - 8 + 2 + \frac{1}{2} = 10 + \frac{1}{2} = 10.5. \] Now at \( x = 1 \): \[ 1^{4} - 1^{3} + \frac{1^{2}}{2} + 1 = 1 - 1 + \frac{1}{2} + 1 = \frac{1}{2} + 1 = 1.5. \] Subtracting the two results: \[ 10.5 - 1.5 = 9. \] Thus, the value of the integral is \[ \int_{1}^{2} \frac{4 x^{5}-3 x^{4}+x^{3}-1}{x^{2}} d x = 9. \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy