Geometry Questions from Jan 10,2025

Browse the Geometry Q&A Archive for Jan 10,2025, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
Given: \( D \) is the midpoint of \( \overline{A C}, \overline{B A} \cong \overline{B C} \) and \( \angle E D A \cong \angle F D C \). Prove: \( \triangle A E D \cong \triangle C F D \). Note: quadrilateral properties are not permitted in this proof. (2) If \( \mathrm{m}(\angle \mathrm{B})=80^{\circ} \), then \( \mathrm{m}( \) refle \( x \angle B)=\ldots \) \( \begin{array}{llll}\text { (a) } 10^{\circ} & \text { (b) } 100^{\circ} & \text { (c) } 80^{\circ} & \text { (d) } 280^{\circ}\end{array} \) What is the formula for the surface area of a sphere in terms of its radius? Esercizio 1. Si consideri la conica \[ \mathscr{C}: 3 x^{2}-10 x y+3 y^{2}+4 x-2 y-1=0 \] (a) Provare che si tratta di una iperbole generale. (b) Calcolarne centro e asintoti. Esercizio 3. Trovare centro e raggio della circonferenza \( \mathscr{C}:\left\{\begin{array}{l}x^{2}+y^{2}+z^{2}-4 x+2 y-6 z=1 \\ x+2 y-2 z=0\end{array}\right. \) Esercizio 5. Si consideri la conica proiettiva: \[ \mathscr{C}: X_{1}^{2}+2 X_{1} X_{2}+X_{2}^{2}+3 X_{0}^{2}+2 X_{1} X_{0}=0 \] (a) Trovare la forma canonica di \( \mathscr{C} \) (b) Trovare i punti impropri di \( \mathscr{C} \) (c) Calcolare rango e tipo di \( \mathscr{C} \). Esercizio 5. Si consideri la conica proiettiva: \[ \mathscr{C}: X_{1}^{2}+2 X_{1} X_{2}+X_{2}^{2}+3 X_{0}^{2}+2 X_{1} X_{0}=0 \] (a) Trovare la forma canonica di \( \mathscr{C} \). (b) Trovare i punti impropri di \( \mathscr{C} \). (c) Calcolare rango e tipo di \( \mathscr{C} \). Esercizio 5. Si consideri la conica proiettiva: \[ \mathscr{C}: X_{1}^{2}+2 X_{1} X_{2}+X_{2}^{2}+3 X_{0}^{2}+2 X_{1} X_{0}=0 \] (a) Trovare la forma canonica di \( \mathscr{C} \) (b) Trovare i punti improni di \( \mathscr{C} \). Esercizio 2. Portare in forma canonica la quadrica \[ \mathscr{Q}: x^{2}-2 x y+2 y^{2}+2 y z+z^{2}+2 x+2=0 \] Esercizio 2. Portare in forma canonica la quadrica \[ \mathscr{Q}: x^{2}-2 x y+2 y^{2}+2 y z+z^{2}+2 x+2=0 \]
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy