Question
upstudy study bank question image url

\begin{tabular}{l} Evaluate (i) \( \int \log x d x \) \\ (ii) \( \int_{0}^{1} \frac{x^{3}}{\sqrt{1-x^{3}}} d x \) \\ \hline\end{tabular}

Ask by Reed Conner. in Nepal
Jan 21,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The answers are: 1. \( \int \log x \, dx = x \log x - x + C \) 2. \( \int_{0}^{1} \frac{x^{3}}{\sqrt{1 - x^{3}}} \, dx = \frac{1}{3} B\left(\frac{4}{3}, \frac{1}{2}\right) \)

Solution

Let's evaluate each integral step by step. ### (i) \( \int \log x \, dx \) This is a standard integral that can be solved using integration by parts. Recall the formula: \[ \int u \, dv = uv - \int v \, du \] Let: - \( u = \log x \) ⇒ \( du = \frac{1}{x} \, dx \) - \( dv = dx \) ⇒ \( v = x \) Applying integration by parts: \[ \int \log x \, dx = x \log x - \int x \cdot \frac{1}{x} \, dx = x \log x - \int 1 \, dx = x \log x - x + C \] **Answer for (i):** \[ \int \log x \, dx = x \log x - x + C \] --- ### (ii) \( \int_{0}^{1} \frac{x^{3}}{\sqrt{1 - x^{3}}} \, dx \) To evaluate this integral, we'll use a substitution that transforms it into the form of the Beta function, which is related to the Gamma function. **Step 1: Substitution** Let \( u = x^3 \). Then, \[ x = u^{1/3} \quad \text{and} \quad dx = \frac{1}{3} u^{-2/3} \, du \] **Step 2: Change of Limits** When \( x = 0 \), \( u = 0 \). When \( x = 1 \), \( u = 1 \). **Step 3: Rewrite the Integral** Substituting into the integral: \[ \int_{0}^{1} \frac{x^{3}}{\sqrt{1 - x^{3}}} \, dx = \int_{0}^{1} \frac{u}{\sqrt{1 - u}} \cdot \frac{1}{3} u^{-2/3} \, du = \frac{1}{3} \int_{0}^{1} u^{1/3} (1 - u)^{-1/2} \, du \] **Step 4: Express in Terms of the Beta Function** The Beta function is defined as: \[ B(a, b) = \int_{0}^{1} t^{a-1} (1 - t)^{b-1} \, dt \] Comparing, we have: \[ a = \frac{4}{3}, \quad b = \frac{1}{2} \] Thus, \[ \frac{1}{3} \int_{0}^{1} u^{1/3} (1 - u)^{-1/2} \, du = \frac{1}{3} B\left(\frac{4}{3}, \frac{1}{2}\right) \] **Step 5: Relate to the Gamma Function** The Beta function can be expressed in terms of Gamma functions: \[ B(a, b) = \frac{\Gamma(a) \Gamma(b)}{\Gamma(a + b)} \] Therefore, \[ \frac{1}{3} B\left(\frac{4}{3}, \frac{1}{2}\right) = \frac{1}{3} \cdot \frac{\Gamma\left(\frac{4}{3}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{5}{3}\right)} \] **Final Answer:** \[ \int_{0}^{1} \frac{x^{3}}{\sqrt{1 - x^{3}}} \, dx = \frac{1}{3} B\left(\frac{4}{3}, \frac{1}{2}\right) = \frac{1}{3} \cdot \frac{\Gamma\left(\frac{4}{3}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{5}{3}\right)} \] Where \( B \) is the Beta function and \( \Gamma \) is the Gamma function. ### Summary of Results 1. **Integral (i):** \[ \int \log x \, dx = x \log x - x + C \] 2. **Integral (ii):** \[ \int_{0}^{1} \frac{x^{3}}{\sqrt{1 - x^{3}}} \, dx = \frac{1}{3} \cdot \frac{\Gamma\left(\frac{4}{3}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{5}{3}\right)} \] Or, using the Beta function: \[ \int_{0}^{1} \frac{x^{3}}{\sqrt{1 - x^{3}}} \, dx = \frac{1}{3} B\left(\frac{4}{3}, \frac{1}{2}\right) \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To evaluate the integrals, we'll tackle them one at a time. (i) To evaluate \( \int \log x \, dx \), we can use integration by parts. Let: - \( u = \log x \) so that \( du = \frac{1}{x} \, dx \) - \( dv = dx \) so that \( v = x \) Now, applying integration by parts: \[ \int \log x \, dx = u v - \int v \, du \] \[ = x \log x - \int x \cdot \frac{1}{x} \, dx \] \[ = x \log x - \int 1 \, dx \] \[ = x \log x - x + C \] So, the result is: \[ \int \log x \, dx = x \log x - x + C \] (ii) To evaluate the definite integral \( \int_{0}^{1} \frac{x^{3}}{\sqrt{1-x^{3}}} \, dx \), we can use substitution. Let: \[ u = 1 - x^3 \quad \Rightarrow \quad du = -3x^2 \, dx \quad \Rightarrow \quad dx = -\frac{du}{3x^2} \] Now we also need to express \( x^3 \) in terms of \( u \) by rearranging: \[ x^3 = 1 - u \quad \Rightarrow \quad x = (1 - u)^{1/3} \quad \Rightarrow \quad x^2 = (1 - u)^{2/3} \] Now, changing limits according to the substitution: When \( x = 0 \), \( u = 1 \) and when \( x = 1 \), \( u = 0 \). Plugging everything in: \[ = \int_{1}^{0} \frac{(1-u)}{\sqrt{u}} \left(-\frac{du}{3(1-u)^{2/3}}\right) \] This simplifies to: \[ = \frac{1}{3} \int_{0}^{1} \frac{\sqrt{1-u}}{u^{1/2}} du \] This integral can be solved using the beta function or directly through evaluation techniques. The final answer can be simplified to arrive at a closed form. Therefore, we find that: \[ \int_{0}^{1} \frac{x^{3}}{\sqrt{1-x^{3}}} \, dx = \frac{1}{3} \cdot \frac{\pi}{2} = \frac{\pi}{6} \] So, the evaluations yield: (i) \( \int \log x \, dx = x \log x - x + C \) (ii) \( \int_{0}^{1} \frac{x^{3}}{\sqrt{1 - x^{3}}} \, dx = \frac{\pi}{6} \)

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy