Question
upstudy study bank question image url

Berilgan chiziqlar bilan chegaralangan shaklni absissa o‘qi atrofida aylantirishdan hosil bo'lgan jism hajmini toping. \[ \cdots y=2 x-x^{2}, y=0 \]

Ask by Howell Mcdonald. in Uzbekistan
Jan 21,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Aylanma jismining hajmi \(\frac{16}{15}\pi\) birlik kubga teng.

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Beyond the Answer

Berilgan chiziqlar \( y = 2x - x^2 \) va \( y = 0 \) ekan. Avval bu funksiya bilan aniqlangan shaklni topishimiz kerak. Funksiya \( y = 2x - x^2 \) parabola bo‘lib, \( y = 0 \) bilan kesishadi, shuning uchun \( 2x - x^2 = 0 \) bo‘lganda x ni topamiz. Bu tenglamaning yechimi \( x(2 - x) = 0 \) tenglamasidan \( x = 0 \) va \( x = 2 \) bo'ladi. Shakl \( [0, 2] \) oralig'ida mavjud. Aylantirganda hosil bo'ladigan jism hajmini topish uchun, disk metodidan foydalanamiz. Jismning hajmi quyidagicha hisoblanadi: \[ V = \pi \int_{a}^{b} [f(x)]^2 \, dx = \pi \int_{0}^{2} (2x - x^2)^2 \, dx \] Endi \( (2x - x^2)^2 \) funksiyasini kengaytiramiz: \[ (2x - x^2)^2 = 4x^2 - 4x^3 + x^4 \] Shunday qilib, integrali quyidagi ko'rinishda bo'ladi: \[ V = \pi \int_{0}^{2} (4x^2 - 4x^3 + x^4) \, dx \] Integrallashdan so‘ng: \[ V = \pi \left[ \frac{4x^3}{3} - \frac{4x^4}{4} + \frac{x^5}{5} \right]_{0}^{2} = \pi \left[ \frac{4(2^3)}{3} - 2^4 + \frac{2^5}{5} \right] \] Shu nuqtalarda hisoblab chiqamiz va natijani olishimiz mumkin. Hajmi taxminan \( \frac{8\pi}{15} \) bo'ladi.

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy