Berilgan chiziqlar bilan chegaralangan shaklni absissa o‘qi atrofida aylantirishdan hosil bo'lgan jism hajmini toping. \[ \cdots y=2 x-x^{2}, y=0 \]
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
Berilgan chiziqlar \( y = 2x - x^2 \) va \( y = 0 \) ekan. Avval bu funksiya bilan aniqlangan shaklni topishimiz kerak. Funksiya \( y = 2x - x^2 \) parabola bo‘lib, \( y = 0 \) bilan kesishadi, shuning uchun \( 2x - x^2 = 0 \) bo‘lganda x ni topamiz. Bu tenglamaning yechimi \( x(2 - x) = 0 \) tenglamasidan \( x = 0 \) va \( x = 2 \) bo'ladi. Shakl \( [0, 2] \) oralig'ida mavjud. Aylantirganda hosil bo'ladigan jism hajmini topish uchun, disk metodidan foydalanamiz. Jismning hajmi quyidagicha hisoblanadi: \[ V = \pi \int_{a}^{b} [f(x)]^2 \, dx = \pi \int_{0}^{2} (2x - x^2)^2 \, dx \] Endi \( (2x - x^2)^2 \) funksiyasini kengaytiramiz: \[ (2x - x^2)^2 = 4x^2 - 4x^3 + x^4 \] Shunday qilib, integrali quyidagi ko'rinishda bo'ladi: \[ V = \pi \int_{0}^{2} (4x^2 - 4x^3 + x^4) \, dx \] Integrallashdan so‘ng: \[ V = \pi \left[ \frac{4x^3}{3} - \frac{4x^4}{4} + \frac{x^5}{5} \right]_{0}^{2} = \pi \left[ \frac{4(2^3)}{3} - 2^4 + \frac{2^5}{5} \right] \] Shu nuqtalarda hisoblab chiqamiz va natijani olishimiz mumkin. Hajmi taxminan \( \frac{8\pi}{15} \) bo'ladi.