Question
upstudy study bank question image url

Find the value of मान ज्ञात कीजिए : (a) \( \int_{|:|=1} \frac{e^{2 z}}{(z+1)^{4}} d z \). (b) \( \int_{|:|=1} \frac{\sin ^{6} z}{\left(z-\frac{\pi}{6}\right)^{3}} d z \). Discuss the singularities of the following functions (a) \( f(z)=\frac{1}{z\left(e^{2}-1\right)} \). (b) \( f(z)=\tan \frac{1}{z} \). (c) \( f(z)=\frac{z}{(z-1)^{2}} \cos \frac{1}{z-2} \). fिम्नलिखित फलनों की विवित्रताओं की विवेचना कीजिए : (a) \( f(z)=\frac{1}{z\left(e^{2}-1\right)} \). (b) \( f(z)=\tan \frac{1}{z} \). (c) \( f(z)=\frac{z}{(z-1)^{2}} \cos \frac{1}{z-2} \).

Ask by Adkins Gough. in India
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The integrals are evaluated as follows: (a) \( \int_{|z|=1} \frac{e^{2 z}}{(z+1)^{4}} d z = \frac{8 \pi i e^{-2}}{3} \) (b) \( \int_{|z|=1} \frac{\sin^{6} z}{\left(z - \frac{\pi}{6}\right)^{3}} d z = \frac{21 \pi i}{16} \) ### Singularities Discussion (a) \( f(z) = \frac{1}{z(e^{2} - 1)} \) - **Singularities**: The function has a pole at \( z = 0 \) and a pole at \( z = \frac{2\pi i}{2} = \pi i \) (since \( e^{2} = 1 \) when \( z = \pi i \)). - **Residues**: - At \( z = 0 \): \( \text{Residue} = \lim_{z \to 0} z \cdot \frac{1}{z(e^{2} - 1)} = \frac{1}{e^{2} - 1} \) - At \( z = \pi i \): \( \text{Residue} = \lim_{z \to \pi i} (z - \pi i) \cdot \frac{1}{z(e^{2} - 1)} = \frac{1}{\pi i (e^{2} - 1)} \) (b) \( f(z) = \tan \frac{1}{z} \) - **Singularities**: The function has an essential singularity at \( z = 0 \) because \( \frac{1}{z} \) approaches infinity as \( z \) approaches 0. - **Residues**: The residue at \( z = 0 \) is more complex and involves the Laurent series expansion of \( \tan \frac{1}{z} \), which has infinitely many terms. (c) \( f(z) = \frac{z}{(z-1)^{2}} \cos \frac{1}{z-2} \) - **Singularities**: The function has a pole of order 2 at \( z = 1 \) and an essential singularity at \( z = 2 \) due to \( \cos \frac{1}{z-2} \). - **Residues**: - At \( z = 1 \): \( \text{Residue} = \lim_{z \to 1} (z - 1)^2 \cdot \frac{z}{(z-1)^{2}} \cos \frac{1}{z-2} = \cos \frac{1}{-1} = \cos(-1) = \cos(1) \) - At \( z = 2 \): \( \text{Residue} \) is determined by the Laurent series expansion of \( \cos \frac{1}{z-2} \), which has infinitely many terms. **Summary**: - **Integral (a)**: \( \frac{8 \pi i e^{-2}}{3} \) - **Integral (b)**: \( \frac{21 \pi i}{16} \) - **Singularities**: - \( f(z) = \frac{1}{z(e^{2} - 1)} \): Poles at \( z = 0 \) and \( z = \pi i \) - \( f(z) = \tan \frac{1}{z} \): Essential singularity at \( z = 0 \) - \( f(z) = \frac{z}{(z-1)^{2}} \cos \frac{1}{z-2} \): Pole of order 2 at \( z = 1 \) and essential singularity at \( z = 2 \)

Solution

To solve the integrals and discuss the singularities of the given functions, we will proceed step by step. ### Part (a): Evaluate the integral \( \int_{|z|=1} \frac{e^{2 z}}{(z+1)^{4}} d z \) 1. **Identify the singularities**: The integrand \( \frac{e^{2 z}}{(z+1)^{4}} \) has a singularity at \( z = -1 \). This is a pole of order 4. 2. **Residue Calculation**: To evaluate the integral, we can use the residue theorem. We need to find the residue of the function at the pole \( z = -1 \). The residue of a function \( f(z) \) at a pole of order \( n \) can be calculated using the formula: \[ \text{Residue} = \frac{1}{(n-1)!} \lim_{z \to z_0} \frac{d^{n-1}}{dz^{n-1}} \left( (z - z_0)^{n} f(z) \right) \] Here, \( n = 4 \) and \( z_0 = -1 \). We need to compute: \[ \text{Residue} = \frac{1}{3!} \lim_{z \to -1} \frac{d^{3}}{dz^{3}} \left( (z + 1)^{4} \frac{e^{2 z}}{(z + 1)^{4}} \right) = \frac{1}{6} \lim_{z \to -1} \frac{d^{3}}{dz^{3}} e^{2 z} \] 3. **Calculate the derivatives**: \[ e^{2 z} \text{ and its derivatives: } \] - First derivative: \( \frac{d}{dz} e^{2 z} = 2 e^{2 z} \) - Second derivative: \( \frac{d^{2}}{dz^{2}} e^{2 z} = 4 e^{2 z} \) - Third derivative: \( \frac{d^{3}}{dz^{3}} e^{2 z} = 8 e^{2 z} \) Evaluating at \( z = -1 \): \[ \frac{d^{3}}{dz^{3}} e^{2 z} \bigg|_{z=-1} = 8 e^{-2} \] 4. **Final residue**: \[ \text{Residue} = \frac{1}{6} \cdot 8 e^{-2} = \frac{4 e^{-2}}{3} \] 5. **Integral evaluation**: By the residue theorem: \[ \int_{|z|=1} \frac{e^{2 z}}{(z+1)^{4}} d z = 2 \pi i \cdot \text{Residue} = 2 \pi i \cdot \frac{4 e^{-2}}{3} = \frac{8 \pi i e^{-2}}{3} \] ### Part (b): Evaluate the integral \( \int_{|z|=1} \frac{\sin^{6} z}{\left(z - \frac{\pi}{6}\right)^{3}} d z \) 1. **Identify the singularities**: The integrand \( \frac{\sin^{6} z}{\left(z - \frac{\pi}{6}\right)^{3}} \) has a singularity at \( z = \frac{\pi}{6} \). This is a pole of order 3. 2. **Residue Calculation**: We need to find the residue at \( z = \frac{\pi}{6} \). Using the same residue formula: \[ \text{Residue} = \frac{1}{2!} \lim_{z \to \frac{\pi}{6}} \frac{d^{2}}{dz^{2}} \left( (z - \frac{\pi}{6})^{3} \frac{\sin^{6} z}{(z - \frac{\pi}{6})^{3}} \right) = \frac{1}{2} \lim_{z \to \frac{\pi}{6}} \frac{d^{2}}{dz^{2}} \sin^{6} z \] 3. **Calculate the derivatives**: - First derivative: \( \frac{d}{dz} \sin^{6} z = 6 \sin^{5} z \cos z \) - Second derivative: Using the product rule: \[ \frac{d^{2}}{dz^{2}} \sin^{6} z = 6 \left( 5 \sin^{4} z \cos^{2} z - \sin^{6} z \right) \] Evaluating at \( z = \frac{\pi}{6} \): \[ \sin\left(\frac{\pi}{6}\right) = \frac{1}{2}, \quad \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \] \[ \sin^{4}\left(\frac{\pi}{6}\right) = \left(\frac{1}{2}\right)^{4} = \frac{1}{16}, \quad \cos^{2}\left(\frac{\pi}{6}\right) = \left(\frac{\sqrt{3}}{2}\right)^{2} = \frac{3}{4} \] \[ \frac{d^{2}}{dz^{2}} \sin^{6} z \bigg|_{z=\frac{\pi}{6}} = 6 \left( 5 \cdot \frac{1}{16} \cdot \frac{3}{4} - \left(\frac{1}{2}\right)^{6} \right) = 6 \left( \frac{15}{64} - \frac{1}{64} \right) = 6 \cdot \frac{14}{64} = \frac{21}{16} \] 4. **Final residue**: \[ \text{Residue} = \frac{1}{2} \cdot \frac{21}{16} = \frac{21}{32} \] 5. **Integral evaluation**: \[ \int_{|z|=1} \frac{\sin^{6} z}{\left(z - \frac{\pi}{6}\right)^{3}} d z = 2 \pi i \cdot \text{Residue} = 2 \pi i \cdot \frac{21}{32}

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To evaluate the integrals for points (a) and (b), it's crucial to recognize the presence of singularities within the unit circle. For part (a), \( \int_{|z|=1} \frac{e^{2 z}}{(z+1)^{4}} dz \), the singularity at \( z = -1 \) is a fourth-order pole; thus, we can apply the residue theorem to compute the integral efficiently. Similarly, for part (b), the singularity at \( z = \frac{\pi}{6} \) is a third-order pole, and again, residues will help us find the integral value. When analyzing the singularities of the given functions, for (a), \( f(z)=\frac{1}{z(e^{2}-1)} \) has a simple pole at \( z=0 \). It's essential to notice that the factor \( e^{2}-1 \) doesn't contribute any additional singularities. In (b), \( f(z)=\tan \frac{1}{z} \) has an essential singularity at \( z=0 \) due to the behavior of \(\tan\) near its vertical asymptotes. Lastly, (c) \( f(z)=\frac{z}{(z-1)^{2}} \cos \frac{1}{z-2} \) has a second-order pole at \( z=1 \) and an essential singularity due to \(\cos \frac{1}{z-2}\) at \( z=2 \), making this function particularly intriguing for further exploration.

Related Questions

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy