Answer
The integrals are evaluated as follows:
(a) \( \int_{|z|=1} \frac{e^{2 z}}{(z+1)^{4}} d z = \frac{8 \pi i e^{-2}}{3} \)
(b) \( \int_{|z|=1} \frac{\sin^{6} z}{\left(z - \frac{\pi}{6}\right)^{3}} d z = \frac{21 \pi i}{16} \)
### Singularities Discussion
(a) \( f(z) = \frac{1}{z(e^{2} - 1)} \)
- **Singularities**: The function has a pole at \( z = 0 \) and a pole at \( z = \frac{2\pi i}{2} = \pi i \) (since \( e^{2} = 1 \) when \( z = \pi i \)).
- **Residues**:
- At \( z = 0 \): \( \text{Residue} = \lim_{z \to 0} z \cdot \frac{1}{z(e^{2} - 1)} = \frac{1}{e^{2} - 1} \)
- At \( z = \pi i \): \( \text{Residue} = \lim_{z \to \pi i} (z - \pi i) \cdot \frac{1}{z(e^{2} - 1)} = \frac{1}{\pi i (e^{2} - 1)} \)
(b) \( f(z) = \tan \frac{1}{z} \)
- **Singularities**: The function has an essential singularity at \( z = 0 \) because \( \frac{1}{z} \) approaches infinity as \( z \) approaches 0.
- **Residues**: The residue at \( z = 0 \) is more complex and involves the Laurent series expansion of \( \tan \frac{1}{z} \), which has infinitely many terms.
(c) \( f(z) = \frac{z}{(z-1)^{2}} \cos \frac{1}{z-2} \)
- **Singularities**: The function has a pole of order 2 at \( z = 1 \) and an essential singularity at \( z = 2 \) due to \( \cos \frac{1}{z-2} \).
- **Residues**:
- At \( z = 1 \): \( \text{Residue} = \lim_{z \to 1} (z - 1)^2 \cdot \frac{z}{(z-1)^{2}} \cos \frac{1}{z-2} = \cos \frac{1}{-1} = \cos(-1) = \cos(1) \)
- At \( z = 2 \): \( \text{Residue} \) is determined by the Laurent series expansion of \( \cos \frac{1}{z-2} \), which has infinitely many terms.
**Summary**:
- **Integral (a)**: \( \frac{8 \pi i e^{-2}}{3} \)
- **Integral (b)**: \( \frac{21 \pi i}{16} \)
- **Singularities**:
- \( f(z) = \frac{1}{z(e^{2} - 1)} \): Poles at \( z = 0 \) and \( z = \pi i \)
- \( f(z) = \tan \frac{1}{z} \): Essential singularity at \( z = 0 \)
- \( f(z) = \frac{z}{(z-1)^{2}} \cos \frac{1}{z-2} \): Pole of order 2 at \( z = 1 \) and essential singularity at \( z = 2 \)
Solution
To solve the integrals and discuss the singularities of the given functions, we will proceed step by step.
### Part (a): Evaluate the integral \( \int_{|z|=1} \frac{e^{2 z}}{(z+1)^{4}} d z \)
1. **Identify the singularities**: The integrand \( \frac{e^{2 z}}{(z+1)^{4}} \) has a singularity at \( z = -1 \). This is a pole of order 4.
2. **Residue Calculation**: To evaluate the integral, we can use the residue theorem. We need to find the residue of the function at the pole \( z = -1 \).
The residue of a function \( f(z) \) at a pole of order \( n \) can be calculated using the formula:
\[
\text{Residue} = \frac{1}{(n-1)!} \lim_{z \to z_0} \frac{d^{n-1}}{dz^{n-1}} \left( (z - z_0)^{n} f(z) \right)
\]
Here, \( n = 4 \) and \( z_0 = -1 \).
We need to compute:
\[
\text{Residue} = \frac{1}{3!} \lim_{z \to -1} \frac{d^{3}}{dz^{3}} \left( (z + 1)^{4} \frac{e^{2 z}}{(z + 1)^{4}} \right) = \frac{1}{6} \lim_{z \to -1} \frac{d^{3}}{dz^{3}} e^{2 z}
\]
3. **Calculate the derivatives**:
\[
e^{2 z} \text{ and its derivatives: }
\]
- First derivative: \( \frac{d}{dz} e^{2 z} = 2 e^{2 z} \)
- Second derivative: \( \frac{d^{2}}{dz^{2}} e^{2 z} = 4 e^{2 z} \)
- Third derivative: \( \frac{d^{3}}{dz^{3}} e^{2 z} = 8 e^{2 z} \)
Evaluating at \( z = -1 \):
\[
\frac{d^{3}}{dz^{3}} e^{2 z} \bigg|_{z=-1} = 8 e^{-2}
\]
4. **Final residue**:
\[
\text{Residue} = \frac{1}{6} \cdot 8 e^{-2} = \frac{4 e^{-2}}{3}
\]
5. **Integral evaluation**:
By the residue theorem:
\[
\int_{|z|=1} \frac{e^{2 z}}{(z+1)^{4}} d z = 2 \pi i \cdot \text{Residue} = 2 \pi i \cdot \frac{4 e^{-2}}{3} = \frac{8 \pi i e^{-2}}{3}
\]
### Part (b): Evaluate the integral \( \int_{|z|=1} \frac{\sin^{6} z}{\left(z - \frac{\pi}{6}\right)^{3}} d z \)
1. **Identify the singularities**: The integrand \( \frac{\sin^{6} z}{\left(z - \frac{\pi}{6}\right)^{3}} \) has a singularity at \( z = \frac{\pi}{6} \). This is a pole of order 3.
2. **Residue Calculation**: We need to find the residue at \( z = \frac{\pi}{6} \).
Using the same residue formula:
\[
\text{Residue} = \frac{1}{2!} \lim_{z \to \frac{\pi}{6}} \frac{d^{2}}{dz^{2}} \left( (z - \frac{\pi}{6})^{3} \frac{\sin^{6} z}{(z - \frac{\pi}{6})^{3}} \right) = \frac{1}{2} \lim_{z \to \frac{\pi}{6}} \frac{d^{2}}{dz^{2}} \sin^{6} z
\]
3. **Calculate the derivatives**:
- First derivative: \( \frac{d}{dz} \sin^{6} z = 6 \sin^{5} z \cos z \)
- Second derivative: Using the product rule:
\[
\frac{d^{2}}{dz^{2}} \sin^{6} z = 6 \left( 5 \sin^{4} z \cos^{2} z - \sin^{6} z \right)
\]
Evaluating at \( z = \frac{\pi}{6} \):
\[
\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}, \quad \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}
\]
\[
\sin^{4}\left(\frac{\pi}{6}\right) = \left(\frac{1}{2}\right)^{4} = \frac{1}{16}, \quad \cos^{2}\left(\frac{\pi}{6}\right) = \left(\frac{\sqrt{3}}{2}\right)^{2} = \frac{3}{4}
\]
\[
\frac{d^{2}}{dz^{2}} \sin^{6} z \bigg|_{z=\frac{\pi}{6}} = 6 \left( 5 \cdot \frac{1}{16} \cdot \frac{3}{4} - \left(\frac{1}{2}\right)^{6} \right) = 6 \left( \frac{15}{64} - \frac{1}{64} \right) = 6 \cdot \frac{14}{64} = \frac{21}{16}
\]
4. **Final residue**:
\[
\text{Residue} = \frac{1}{2} \cdot \frac{21}{16} = \frac{21}{32}
\]
5. **Integral evaluation**:
\[
\int_{|z|=1} \frac{\sin^{6} z}{\left(z - \frac{\pi}{6}\right)^{3}} d z = 2 \pi i \cdot \text{Residue} = 2 \pi i \cdot \frac{21}{32}
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution