Question
upstudy study bank question image url

2. A particle moves along the curve \[ \begin{array}{l}x=2 t^{2}, \quad y=t^{2}-4 t \quad \text { and } \quad z=3 t-5 \\ \text { where } t \text { is the time. Find the components of its velocity and acceleration at time } t=1 \text {, in the } \\ \text { direction } \hat{i}-3 \hat{j}+2 \hat{k} \text {. } \\ \text { (Nagpur, Summer 200l) Ans. } \frac{8 \sqrt{14}}{7},-\frac{\sqrt{14}}{7}\end{array} \]

Ask by Stanley Nunez. in Nigeria
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

At time \( t = 1 \), the velocity component in the direction \( \hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 2\hat{\mathbf{k}} \) is \( \frac{8\sqrt{14}}{7} \) and the acceleration component is \( -\frac{\sqrt{14}}{7} \).

Solution

To solve the problem, we'll determine the components of the particle's velocity and acceleration at time \( t = 1 \) in the direction of the vector \( \mathbf{d} = \hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 2\hat{\mathbf{k}} \). ### Step 1: Determine the Velocity and Acceleration Vectors **Given:** \[ \begin{cases} x = 2t^2 \\ y = t^2 - 4t \\ z = 3t - 5 \end{cases} \] **Position Vector:** \[ \mathbf{r}(t) = 2t^2\,\hat{\mathbf{i}} + (t^2 - 4t)\,\hat{\mathbf{j}} + (3t - 5)\,\hat{\mathbf{k}} \] **Velocity Vector (\( \mathbf{v}(t) \)):** \[ \mathbf{v}(t) = \frac{d\mathbf{r}}{dt} = \frac{d}{dt}(2t^2)\,\hat{\mathbf{i}} + \frac{d}{dt}(t^2 - 4t)\,\hat{\mathbf{j}} + \frac{d}{dt}(3t - 5)\,\hat{\mathbf{k}} = 4t\,\hat{\mathbf{i}} + (2t - 4)\,\hat{\mathbf{j}} + 3\,\hat{\mathbf{k}} \] **Acceleration Vector (\( \mathbf{a}(t) \)):** \[ \mathbf{a}(t) = \frac{d\mathbf{v}}{dt} = \frac{d}{dt}(4t)\,\hat{\mathbf{i}} + \frac{d}{dt}(2t - 4)\,\hat{\mathbf{j}} + \frac{d}{dt}(3)\,\hat{\mathbf{k}} = 4\,\hat{\mathbf{i}} + 2\,\hat{\mathbf{j}} + 0\,\hat{\mathbf{k}} \] **At \( t = 1 \):** \[ \mathbf{v}(1) = 4(1)\,\hat{\mathbf{i}} + (2(1) - 4)\,\hat{\mathbf{j}} + 3\,\hat{\mathbf{k}} = 4\,\hat{\mathbf{i}} - 2\,\hat{\mathbf{j}} + 3\,\hat{\mathbf{k}} \] \[ \mathbf{a}(1) = 4\,\hat{\mathbf{i}} + 2\,\hat{\mathbf{j}} + 0\,\hat{\mathbf{k}} = 4\,\hat{\mathbf{i}} + 2\,\hat{\mathbf{j}} \] ### Step 2: Determine the Unit Vector in the Given Direction **Given Direction Vector:** \[ \mathbf{d} = \hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 2\hat{\mathbf{k}} \] **Magnitude of \( \mathbf{d} \):** \[ |\mathbf{d}| = \sqrt{1^2 + (-3)^2 + 2^2} = \sqrt{1 + 9 + 4} = \sqrt{14} \] **Unit Vector (\( \hat{\mathbf{u}} \)):** \[ \hat{\mathbf{u}} = \frac{\mathbf{d}}{|\mathbf{d}|} = \frac{1}{\sqrt{14}}\,\hat{\mathbf{i}} - \frac{3}{\sqrt{14}}\,\hat{\mathbf{j}} + \frac{2}{\sqrt{14}}\,\hat{\mathbf{k}} \] ### Step 3: Calculate the Components of Velocity and Acceleration in the Given Direction The component of a vector \( \mathbf{A} \) in the direction of \( \hat{\mathbf{u}} \) is given by the dot product \( \mathbf{A} \cdot \hat{\mathbf{u}} \). **Component of Velocity (\( v_{\text{component}} \)):** \[ \mathbf{v}(1) \cdot \hat{\mathbf{u}} = \left(4\,\hat{\mathbf{i}} - 2\,\hat{\mathbf{j}} + 3\,\hat{\mathbf{k}}\right) \cdot \left(\frac{1}{\sqrt{14}}\,\hat{\mathbf{i}} - \frac{3}{\sqrt{14}}\,\hat{\mathbf{j}} + \frac{2}{\sqrt{14}}\,\hat{\mathbf{k}}\right) \] \[ = \frac{4 \times 1}{\sqrt{14}} + \frac{(-2) \times (-3)}{\sqrt{14}} + \frac{3 \times 2}{\sqrt{14}} = \frac{4 + 6 + 6}{\sqrt{14}} = \frac{16}{\sqrt{14}} = \frac{8\sqrt{14}}{7} \] **Component of Acceleration (\( a_{\text{component}} \)):** \[ \mathbf{a}(1) \cdot \hat{\mathbf{u}} = \left(4\,\hat{\mathbf{i}} + 2\,\hat{\mathbf{j}}\right) \cdot \left(\frac{1}{\sqrt{14}}\,\hat{\mathbf{i}} - \frac{3}{\sqrt{14}}\,\hat{\mathbf{j}} + \frac{2}{\sqrt{14}}\,\hat{\mathbf{k}}\right) \] \[ = \frac{4 \times 1}{\sqrt{14}} + \frac{2 \times (-3)}{\sqrt{14}} + \frac{0 \times 2}{\sqrt{14}} = \frac{4 - 6 + 0}{\sqrt{14}} = \frac{-2}{\sqrt{14}} = -\frac{\sqrt{14}}{7} \] ### **Final Answer:** - **Velocity Component:** \( \frac{8\sqrt{14}}{7} \) - **Acceleration Component:** \( -\frac{\sqrt{14}}{7} \) These match the provided answer: \[ \boxed{\frac{8 \sqrt{14}}{7},\quad -\frac{\sqrt{14}}{7}} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To find the components of the velocity and acceleration of the particle at time \( t=1 \), we first need to compute the velocity vector \( \mathbf{v} \) by differentiating the position functions \( x(t) \), \( y(t) \), and \( z(t) \) with respect to time \( t \). The velocity components are given by: \[ v_x = \frac{dx}{dt} = 4t, \quad v_y = \frac{dy}{dt} = 2t - 4, \quad v_z = \frac{dz}{dt} = 3. \] At \( t=1 \): \[ v_x = 4(1) = 4, \quad v_y = 2(1) - 4 = -2, \quad v_z = 3. \] Thus, the velocity vector is \( \mathbf{v} = \langle 4, -2, 3 \rangle \). Next, we compute the acceleration vector \( \mathbf{a} \) by differentiating the velocity components: \[ a_x = \frac{dv_x}{dt} = 4, \quad a_y = \frac{dv_y}{dt} = 2, \quad a_z = \frac{dv_z}{dt} = 0. \] This gives us the acceleration vector as \( \mathbf{a} = \langle 4, 2, 0 \rangle \). To find the components of both vectors in the direction of \( \hat{i} - 3 \hat{j} + 2 \hat{k} \), we first need to normalize this direction vector: \[ \text{Magnitude} = \sqrt{1^2 + (-3)^2 + 2^2} = \sqrt{1 + 9 + 4} = \sqrt{14}. \] The unit direction vector \( \mathbf{u} \) is then: \[ \mathbf{u} = \frac{1}{\sqrt{14}} \langle 1, -3, 2 \rangle. \] Now, to project the velocity and acceleration onto this direction, we use the dot product: \[ \text{Velocity component} = \mathbf{v} \cdot \mathbf{u} = \langle 4, -2, 3 \rangle \cdot \frac{1}{\sqrt{14}} \langle 1, -3, 2 \rangle = \frac{1}{\sqrt{14}}(4(1) - 2(-3) + 3(2)) = \frac{1}{\sqrt{14}}(4 + 6 + 6) = \frac{16}{\sqrt{14}}. \] \[ \text{Acceleration component} = \mathbf{a} \cdot \mathbf{u} = \langle 4, 2, 0 \rangle \cdot \frac{1}{\sqrt{14}} \langle 1, -3, 2 \rangle = \frac{1}{\sqrt{14}}(4(1) + 2(-3) + 0(2)) = \frac{1}{\sqrt{14}}(4 - 6) = \frac{-2}{\sqrt{14}}. \] Thus, the final results for the components of the velocity and acceleration at \( t=1 \) in the specified direction are: \[ \frac{8\sqrt{14}}{7}, -\frac{\sqrt{14}}{7}. \]

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy