Question
upstudy study bank question image url

5. Resuelva las siguientes funciones aplicando la regla de la cadena. (1,0 puntos) a. \( f(x)=\left(-4 x^{2}+x\right)^{3} \) b. \( f(x)=3\left(7 x^{3}+x-2\right)^{3} \)

Ask by Delgado Ortega. in Colombia
Dec 14,2024

Real Tutor Solution

Tutor-Verified Answer

Answer

a. \( f'(x) = 3(-4x^2 + x)^2 \cdot (-8x + 1) \) b. \( f'(x) = 9(7x^3 + x - 2)^2 \cdot (21x^2 + 1) \)

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Extra Insights

Para resolver las funciones aplicando la regla de la cadena, comenzamos con la derivada de cada función. Para \( f(x)=\left(-4 x^{2}+x\right)^{3} \): Primero, identificamos la función exterior \( g(u) = u^3 \) y la función interior \( u = -4x^2 + x \). La derivada de \( g(u) \) es \( g'(u) = 3u^2 \), y la derivada de \( u \) es \( u' = -8x + 1 \). Aplicando la regla de la cadena, obtenemos: \[ f'(x) = g'(u) \cdot u' = 3(-4x^2 + x)^{2} \cdot (-8x + 1). \] Para \( f(x)=3\left(7 x^{3}+x-2\right)^{3} \): De nuevo, definimos la función exterior \( g(u) = 3u^3 \) y la función interior \( u = 7x^3 + x - 2 \). La derivada de \( g(u) \) es \( g'(u) = 9u^2 \), y la derivada de \( u \) es \( u' = 21x^2 + 1 \). Aplicando la regla de la cadena: \[ f'(x) = g'(u) \cdot u' = 9(7x^3 + x - 2)^{2} \cdot (21x^2 + 1). \] ¡Listo! Así hemos aplicado la regla de la cadena para derivar ambas funciones.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy