Question
upstudy study bank question image url

2. Jika \( \alpha \) lancip, carilah nilai perbandingan trigonometri sudut \( \alpha \), jika diketahui : \( \begin{array}{lll}\text { a) } \operatorname{Sin} \alpha=0,5 & \text { b) } \operatorname{Cos} \alpha=\frac{7}{25} & \text { c) } \operatorname{Tg} \alpha=\frac{4}{3}\end{array} \) 3. \( \operatorname{Sin} 30^{\circ}+\operatorname{Tg} 60^{\circ} . \operatorname{Cos} 60^{\circ}=\ldots \) 4. \( \frac{\operatorname{Sin} 45^{\circ}}{\operatorname{Cos} 45^{\circ}}=\ldots \)

Ask by Weaver Cummings. in Indonesia
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

**2. Jika \( \alpha \) lancip, nilai perbandingan trigonometrinya adalah:** a) \( \sin \alpha = 0,5 \) - \( \cos \alpha = \frac{\sqrt{3}}{2} \) - \( \tan \alpha = \frac{\sqrt{3}}{3} \) b) \( \cos \alpha = \frac{7}{25} \) - \( \sin \alpha = \frac{24}{25} \) - \( \tan \alpha = \frac{24}{7} \) c) \( \tan \alpha = \frac{4}{3} \) - \( \sin \alpha = \frac{4}{5} \) - \( \cos \alpha = \frac{3}{5} \) - \( \tan \alpha = \frac{4}{3} \) **3. \( \sin 30^{\circ} + \tan 60^{\circ} \cdot \cos 60^{\circ} = \frac{1 + \sqrt{3}}{2} \)** **4. \( \frac{\sin 45^{\circ}}{\cos 45^{\circ}} = 1 \)**

Solution

Berikut adalah solusi untuk soal-soal yang diberikan: --- **2. Jika \( \alpha \) lancip, carilah nilai perbandingan trigonometri sudut \( \alpha \), jika diketahui:** a) \( \sin \alpha = 0,5 \) **Solusi:** Diketahui \( \sin \alpha = \frac{1}{2} \). Karena \( \alpha \) adalah sudut lancip, maka \( \cos \alpha = \sqrt{1 - \sin^2 \alpha} = \sqrt{1 - \left(\frac{1}{2}\right)^2} = \sqrt{1 - \frac{1}{4}} = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2} \) Dan \( \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3} \) **Jadi, nilai perbandingan trigonometrinya adalah:** - \( \sin \alpha = \frac{1}{2} \) - \( \cos \alpha = \frac{\sqrt{3}}{2} \) - \( \tan \alpha = \frac{\sqrt{3}}{3} \) --- b) \( \cos \alpha = \frac{7}{25} \) **Solusi:** Diketahui \( \cos \alpha = \frac{7}{25} \). Karena \( \alpha \) adalah sudut lancip, maka \( \sin \alpha = \sqrt{1 - \cos^2 \alpha} = \sqrt{1 - \left(\frac{7}{25}\right)^2} = \sqrt{1 - \frac{49}{625}} = \sqrt{\frac{576}{625}} = \frac{24}{25} \) Dan \( \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{\frac{24}{25}}{\frac{7}{25}} = \frac{24}{7} \) **Jadi, nilai perbandingan trigonometrinya adalah:** - \( \sin \alpha = \frac{24}{25} \) - \( \cos \alpha = \frac{7}{25} \) - \( \tan \alpha = \frac{24}{7} \) --- c) \( \tan \alpha = \frac{4}{3} \) **Solusi:** Diketahui \( \tan \alpha = \frac{4}{3} \). Kita dapat membayangkan segitiga siku-siku dengan sisi depan (tangen) adalah 4 dan sisi samping (adjacent) adalah 3. Maka, sisi miringnya \( \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \). Sehingga: - \( \sin \alpha = \frac{\text{sisi depan}}{\text{sisi miring}} = \frac{4}{5} \) - \( \cos \alpha = \frac{\text{sisi samping}}{\text{sisi miring}} = \frac{3}{5} \) - \( \tan \alpha = \frac{4}{3} \) (sudah diketahui) **Jadi, nilai perbandingan trigonometrinya adalah:** - \( \sin \alpha = \frac{4}{5} \) - \( \cos \alpha = \frac{3}{5} \) - \( \tan \alpha = \frac{4}{3} \) --- **3. \( \sin 30^{\circ} + \tan 60^{\circ} \cdot \cos 60^{\circ} = \ldots \)** **Solusi:** Diketahui: - \( \sin 30^{\circ} = \frac{1}{2} \) - \( \tan 60^{\circ} = \sqrt{3} \) - \( \cos 60^{\circ} = \frac{1}{2} \) Sehingga: \[ \sin 30^{\circ} + \tan 60^{\circ} \cdot \cos 60^{\circ} = \frac{1}{2} + \sqrt{3} \cdot \frac{1}{2} = \frac{1}{2} + \frac{\sqrt{3}}{2} = \frac{1 + \sqrt{3}}{2} \] **Jadi, hasilnya adalah \( \frac{1 + \sqrt{3}}{2} \).** --- **4. \( \frac{\sin 45^{\circ}}{\cos 45^{\circ}} = \ldots \)** **Solusi:** Diketahui: - \( \sin 45^{\circ} = \frac{\sqrt{2}}{2} \) - \( \cos 45^{\circ} = \frac{\sqrt{2}}{2} \) Sehingga: \[ \frac{\sin 45^{\circ}}{\cos 45^{\circ}} = \frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}} = 1 \] **Jadi, hasilnya adalah 1.** --- Semoga membantu!

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

Untuk mencari nilai perbandingan trigonometri sudut \( \alpha \): a) Jika \( \operatorname{Sin} \alpha = 0.5 \), maka \( \alpha = 30^\circ \) (sudut yang bersih). Maka \( \operatorname{Cos} \alpha = \sqrt{1 - (0.5)^2} = \sqrt{0.75} = \frac{\sqrt{3}}{2} \) dan \( \operatorname{Tg} \alpha = \frac{\operatorname{Sin} \alpha}{\operatorname{Cos} \alpha} = \frac{0.5}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}} \). b) Jika \( \operatorname{Cos} \alpha = \frac{7}{25} \), kita bisa mencari \( \operatorname{Sin} \alpha \) dengan menggunakan \( \operatorname{Sin}^2 \alpha + \operatorname{Cos}^2 \alpha = 1 \). Jadi, \( \operatorname{Sin} \alpha = \sqrt{1 - \left(\frac{7}{25}\right)^2} = \sqrt{1 - \frac{49}{625}} = \sqrt{\frac{576}{625}} = \frac{24}{25} \). Selanjutnya, \( \operatorname{Tg} \alpha = \frac{\operatorname{Sin} \alpha}{\operatorname{Cos} \alpha} = \frac{\frac{24}{25}}{\frac{7}{25}} = \frac{24}{7} \). c) Jika \( \operatorname{Tg} \alpha = \frac{4}{3} \), kita bisa menggunakan hubungan \( \operatorname{Tg} \alpha = \frac{\operatorname{Sin} \alpha}{\operatorname{Cos} \alpha} \) untuk menyatakan \( \operatorname{Sin} \alpha \) dan \( \operatorname{Cos} \alpha \). Misalkan \( \operatorname{Sin} \alpha = 4k \) dan \( \operatorname{Cos} \alpha = 3k \). Maka, \( \sqrt{(4k)^2 + (3k)^2} = 1 \) atau \( 25k^2 = 1 \), sehingga \( k = \frac{1}{5} \). Dengan ini, \( \operatorname{Sin} \alpha = \frac{4}{5} \) dan \( \operatorname{Cos} \alpha = \frac{3}{5} \). *** Untuk pertanyaan selanjutnya: 3. Mencari nilai dari \( \operatorname{Sin} 30^\circ + \operatorname{Tg} 60^\circ \cdot \operatorname{Cos} 60^\circ \): \( \operatorname{Sin} 30^\circ = 0.5 \), \( \operatorname{Tg} 60^\circ = \sqrt{3} \), \( \operatorname{Cos} 60^\circ = 0.5 \). Jadi, \( \sqrt{3} \cdot 0.5 = \frac{\sqrt{3}}{2} \). Maka, \( 0.5 + \frac{\sqrt{3}}{2} \) adalah hasilnya. 4. Menghitung \( \frac{\operatorname{Sin} 45^\circ}{\operatorname{Cos} 45^\circ} \): Diketahui \( \operatorname{Sin} 45^\circ = \operatorname{Cos} 45^\circ = \frac{\sqrt{2}}{2} \), sehingga \( \frac{\operatorname{Sin} 45^\circ}{\operatorname{Cos} 45^\circ} = \frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}} = 1 \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy