Answer
To find the derivative of \( f(x) = \cos\left( \sqrt{ \sin(\tan(\pi x)) } \right) \), use the chain rule multiple times:
1. Differentiate the outer cosine function: \( -\sin(w) \).
2. Differentiate the square root: \( \frac{1}{2\sqrt{v}} \).
3. Differentiate the sine function: \( \cos(u) \).
4. Differentiate the tangent function: \( \pi \sec^2(\pi x) \).
Combine these derivatives:
\[
f'(x) = -\frac{\pi \sin\left( \sqrt{\sin(\tan(\pi x))} \right) \cos(\tan(\pi x)) \sec^2(\pi x)}{2 \sqrt{\sin(\tan(\pi x))}}
\]
So, the derivative is:
\[
f'(x) = -\frac{\pi \sin\left( \sqrt{\sin(\tan(\pi x))} \right) \cos(\tan(\pi x)) \sec^2(\pi x)}{2 \sqrt{\sin(\tan(\pi x))}}
\]
Solution
To differentiate the function
\[
f(x) = \cos\left( \sqrt{ \sin\left( \tan(\pi x) \right) } \right),
\]
we can apply the **chain rule** multiple times due to the nested functions involved. Here's a step-by-step breakdown:
### Step 1: Identify the Nested Functions
Let's break down \( f(x) \) into simpler functions:
1. **Innermost function:**
\[
u = \tan(\pi x)
\]
2. **Next layer:**
\[
v = \sin(u) = \sin(\tan(\pi x))
\]
3. **Following layer:**
\[
w = \sqrt{v} = \sqrt{\sin(\tan(\pi x))}
\]
4. **Outer function:**
\[
f(x) = \cos(w) = \cos\left( \sqrt{\sin(\tan(\pi x))} \right)
\]
### Step 2: Apply the Chain Rule
To find \( f'(x) \), we'll differentiate each layer step by step.
1. **Differentiate \( f \) with respect to \( w \):**
\[
\frac{df}{dw} = -\sin(w)
\]
2. **Differentiate \( w \) with respect to \( v \):**
\[
\frac{dw}{dv} = \frac{1}{2\sqrt{v}} = \frac{1}{2\sqrt{\sin(\tan(\pi x))}}
\]
3. **Differentiate \( v \) with respect to \( u \):**
\[
\frac{dv}{du} = \cos(u) = \cos(\tan(\pi x))
\]
4. **Differentiate \( u \) with respect to \( x \):**
\[
\frac{du}{dx} = \frac{d}{dx} [\tan(\pi x)] = \pi \sec^2(\pi x)
\]
### Step 3: Combine the Derivatives
Using the chain rule, multiply the derivatives from each layer:
\[
f'(x) = \frac{df}{dw} \cdot \frac{dw}{dv} \cdot \frac{dv}{du} \cdot \frac{du}{dx}
\]
Substituting the derivatives:
\[
f'(x) = \left[ -\sin\left( \sqrt{\sin(\tan(\pi x))} \right) \right] \cdot \left[ \frac{1}{2\sqrt{\sin(\tan(\pi x))}} \right] \cdot \cos(\tan(\pi x)) \cdot \pi \sec^2(\pi x)
\]
### Step 4: Simplify the Expression
Combining the constants and trigonometric functions, the derivative simplifies to:
\[
f'(x) = -\frac{\pi \sin\left( \sqrt{\sin(\tan(\pi x))} \right) \cos(\tan(\pi x)) \sec^2(\pi x)}{2 \sqrt{\sin(\tan(\pi x))}}
\]
Alternatively, it can be written as:
\[
f'(x) = -\frac{\pi \sin\left( \sqrt{\sin(\tan(\pi x))} \right) \cos(\tan(\pi x))}{2 \cos^2(\pi x) \sqrt{\sin(\tan(\pi x))}}
\]
### Final Answer
Thus, the derivative of \( f(x) \) is:
\[
f'(x) = -\frac{\pi \sin\left( \sqrt{\sin(\tan(\pi x))} \right) \cos(\tan(\pi x)) \sec^2(\pi x)}{2 \sqrt{\sin(\tan(\pi x))}}
\]
### Summary
By applying the chain rule methodically to each nested function, we successfully derived the derivative of the given complex trigonometric function.
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution