The function \( f \) is defined by \( f(x)=x^{3}+2 \sin (2 x+2) \). If the function \( g \) is defined to be \( g(x)=\int_{0}^{x} f(t) d t \), what is the average rate of change of \( g \) on the interval \( [-3,1] \) ? You may use a calculator and round your answer to the nearest thousandth.
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To find the average rate of change of the function \( g \) on the interval \([-3, 1]\), we use the formula for the average rate of change: \[ \text{Average Rate of Change} = \frac{g(b) - g(a)}{b - a} \] where \( a = -3 \) and \( b = 1 \). First, we need to calculate \( g(1) \) and \( g(-3) \). Given that \( g(x) = \int_0^x f(t) \, dt \), we have: \[ g(1) = \int_0^1 f(t) \, dt \quad \text{and} \quad g(-3) = \int_0^{-3} f(t) \, dt \] Since \( g(-3) \) from \( 0 \) to \(-3\) can be reversed, we have: \[ g(-3) = -\int_{-3}^0 f(t) \, dt \] Now we need to compute \( g(1) \) and \( g(-3) \). ### Step 1: Calculate \( g(1) \) \[ g(1) = \int_0^1 (t^3 + 2 \sin(2t + 2)) \, dt \] This integral can be split into two parts: \[ g(1) = \int_0^1 t^3 \, dt + 2 \int_0^1 \sin(2t + 2) \, dt \] Calculating the first integral: \[ \int_0^1 t^3 \, dt = \left[\frac{t^4}{4}\right]_0^1 = \frac{1}{4} \] Now for the second integral, using substitution \( u = 2t + 2 \) gives \( du = 2dt \) or \( dt = \frac{du}{2} \). When \( t = 0 \), \( u = 2 \) and when \( t = 1 \), \( u = 4 \). \[ \int_0^1 \sin(2t + 2) \, dt = \frac{1}{2} \int_2^4 \sin(u) \, du = \frac{1}{2} [-\cos(u)]_2^4 = \frac{1}{2} \left[-\cos(4) + \cos(2)\right] \] Plugging in approximate values (using a calculator): \[ \cos(4) \approx -0.6536, \quad \cos(2) \approx -0.4161 \] So, \[ -\cos(4) + \cos(2) \approx 0.6536 - 0.4161 \approx 0.2375 \] Therefore, \[ g(1) = \frac{1}{4} + 2 \cdot \frac{0.2375}{2} = \frac{1}{4} + 0.2375 \approx 0.25 + 0.2375 \approx 0.4875 \] ### Step 2: Calculate \( g(-3) \) We calculate: \[ g(-3) = -\int_{-3}^0 f(t) \, dt = -\left( \int_{-3}^0 (t^3 + 2 \sin(2t + 2)) \, dt \right) \] Using the same method: 1. Calculate \( \int_{-3}^0 t^3 \, dt = \left[\frac{t^4}{4}\right]_{-3}^0 = 0 - \frac{(-3)^4}{4} = -\frac{81}{4} = -20.25 \) 2. Calculate \( \int_{-3}^0 2\sin(2t + 2) \, dt \) using substitution \( u = 2t + 2 \): - When \( t = -3 \), \( u = -4 \) and when \( t = 0 \), \( u = 2 \), \[ \int_{-3}^0 2\sin(2t + 2) \, dt = \int_{-4}^2 \sin(u) \, du = [-\cos(u)]_{-4}^2 = -\cos(2) + \cos(-4) \] Which simplifies to (as cosine is even): \[ -\cos(