Pregunta
upstudy study bank question image url

The function \( f \) is defined by \( f(x)=x^{3}+2 \sin (2 x+2) \). If the function \( g \) is defined to be \( g(x)=\int_{0}^{x} f(t) d t \), what is the average rate of change of \( g \) on the interval \( [-3,1] \) ? You may use a calculator and round your answer to the nearest thousandth.

Ask by Black Harmon. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The average rate of change of \( g \) on the interval \([-3, 1]\) is \(-5.000\).

Solución

To find the average rate of change of the function \( g(x) = \int_{0}^{x} f(t) \, dt \) on the interval \([-3, 1]\), follow these steps: 1. **Average Rate of Change Formula:** The average rate of change of \( g \) over the interval \([a, b]\) is given by: \[ \text{Average Rate of Change} = \frac{g(b) - g(a)}{b - a} \] For \( a = -3 \) and \( b = 1 \): \[ \text{Average Rate of Change} = \frac{g(1) - g(-3)}{1 - (-3)} = \frac{g(1) - g(-3)}{4} \] 2. **Evaluate \( g(1) \) and \( g(-3) \):** Since \( g(x) = \int_{0}^{x} f(t) \, dt \): \[ g(1) = \int_{0}^{1} \left(t^3 + 2 \sin(2t + 2)\right) \, dt \] \[ g(-3) = \int_{0}^{-3} \left(t^3 + 2 \sin(2t + 2)\right) \, dt = -\int_{-3}^{0} \left(t^3 + 2 \sin(2t + 2)\right) \, dt \] 3. **Combine the Integrals:** \[ g(1) - g(-3) = \int_{0}^{1} \left(t^3 + 2 \sin(2t + 2)\right) \, dt + \int_{-3}^{0} \left(t^3 + 2 \sin(2t + 2)\right) \, dt = \int_{-3}^{1} \left(t^3 + 2 \sin(2t + 2)\right) \, dt \] 4. **Compute the Integral:** \[ \int_{-3}^{1} t^3 \, dt = \left[\frac{t^4}{4}\right]_{-3}^{1} = \frac{1^4}{4} - \frac{(-3)^4}{4} = \frac{1}{4} - \frac{81}{4} = -20 \] \[ 2 \int_{-3}^{1} \sin(2t + 2) \, dt = 2 \left[-\frac{\cos(2t + 2)}{2}\right]_{-3}^{1} = -\cos(4) + \cos(-4) = 0 \] So, the total integral is: \[ -20 + 0 = -20 \] 5. **Calculate the Average Rate of Change:** \[ \frac{-20}{4} = -5 \] Rounding to the nearest thousandth: \[ -5.000 \] **Final Answer:** The average rate of change of \( g \) on \([-3, 1]\) is \(-5.000\).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the average rate of change of the function \( g \) on the interval \([-3, 1]\), we use the formula for the average rate of change: \[ \text{Average Rate of Change} = \frac{g(b) - g(a)}{b - a} \] where \( a = -3 \) and \( b = 1 \). First, we need to calculate \( g(1) \) and \( g(-3) \). Given that \( g(x) = \int_0^x f(t) \, dt \), we have: \[ g(1) = \int_0^1 f(t) \, dt \quad \text{and} \quad g(-3) = \int_0^{-3} f(t) \, dt \] Since \( g(-3) \) from \( 0 \) to \(-3\) can be reversed, we have: \[ g(-3) = -\int_{-3}^0 f(t) \, dt \] Now we need to compute \( g(1) \) and \( g(-3) \). ### Step 1: Calculate \( g(1) \) \[ g(1) = \int_0^1 (t^3 + 2 \sin(2t + 2)) \, dt \] This integral can be split into two parts: \[ g(1) = \int_0^1 t^3 \, dt + 2 \int_0^1 \sin(2t + 2) \, dt \] Calculating the first integral: \[ \int_0^1 t^3 \, dt = \left[\frac{t^4}{4}\right]_0^1 = \frac{1}{4} \] Now for the second integral, using substitution \( u = 2t + 2 \) gives \( du = 2dt \) or \( dt = \frac{du}{2} \). When \( t = 0 \), \( u = 2 \) and when \( t = 1 \), \( u = 4 \). \[ \int_0^1 \sin(2t + 2) \, dt = \frac{1}{2} \int_2^4 \sin(u) \, du = \frac{1}{2} [-\cos(u)]_2^4 = \frac{1}{2} \left[-\cos(4) + \cos(2)\right] \] Plugging in approximate values (using a calculator): \[ \cos(4) \approx -0.6536, \quad \cos(2) \approx -0.4161 \] So, \[ -\cos(4) + \cos(2) \approx 0.6536 - 0.4161 \approx 0.2375 \] Therefore, \[ g(1) = \frac{1}{4} + 2 \cdot \frac{0.2375}{2} = \frac{1}{4} + 0.2375 \approx 0.25 + 0.2375 \approx 0.4875 \] ### Step 2: Calculate \( g(-3) \) We calculate: \[ g(-3) = -\int_{-3}^0 f(t) \, dt = -\left( \int_{-3}^0 (t^3 + 2 \sin(2t + 2)) \, dt \right) \] Using the same method: 1. Calculate \( \int_{-3}^0 t^3 \, dt = \left[\frac{t^4}{4}\right]_{-3}^0 = 0 - \frac{(-3)^4}{4} = -\frac{81}{4} = -20.25 \) 2. Calculate \( \int_{-3}^0 2\sin(2t + 2) \, dt \) using substitution \( u = 2t + 2 \): - When \( t = -3 \), \( u = -4 \) and when \( t = 0 \), \( u = 2 \), \[ \int_{-3}^0 2\sin(2t + 2) \, dt = \int_{-4}^2 \sin(u) \, du = [-\cos(u)]_{-4}^2 = -\cos(2) + \cos(-4) \] Which simplifies to (as cosine is even): \[ -\cos(

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad