Question
upstudy study bank question image url

\( y ^ { ( 4 ) } ( t ) - 2 y ^ { \prime \prime } ( t ) + y ( t ) = 0 \)

Ask by Chambers Howell. in Spain
Dec 08,2024

Real Tutor Solution

Tutor-Verified Answer

Answer

La solución de la ecuación diferencial es \( y(t) = C_1 e^t + C_2 e^{-t} + C_3 t e^t + C_4 t e^{-t} \), donde \( C_1, C_2, C_3 \) y \( C_4 \) son constantes.

Solution

La ecuación diferencial que has proporcionado es: \[ y^{(4)}(t) - 2y''(t) + y(t) = 0 \] Para resolver esta ecuación, podemos asumir una solución de la forma \( y(t) = e^{rt} \), donde \( r \) es una constante que debemos determinar. Al sustituir esta forma en la ecuación, obtenemos: \[ r^4 e^{rt} - 2r^2 e^{rt} + e^{rt} = 0 \] Factorizando \( e^{rt} \) (que nunca es cero), tenemos: \[ r^4 - 2r^2 + 1 = 0 \] Ahora, podemos hacer un cambio de variable, dejando \( u = r^2 \). Entonces, la ecuación se convierte en: \[ u^2 - 2u + 1 = 0 \] Esto se puede factorizar como: \[ (u - 1)^2 = 0 \] Por lo tanto, \( u = 1 \), lo que implica que: \[ r^2 = 1 \quad \Rightarrow \quad r = \pm 1 \] Esto nos da las raíces \( r = 1 \) y \( r = -1 \). Dado que ambas raíces son reales y tienen multiplicidad 2, la solución general de la ecuación diferencial es: \[ y(t) = C_1 e^t + C_2 e^{-t} + C_3 t e^t + C_4 t e^{-t} \] donde \( C_1, C_2, C_3 \) y \( C_4 \) son constantes que se determinan a partir de las condiciones iniciales.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

This fourth-order linear homogeneous differential equation can model various physical phenomena, such as beam deflection in engineering or vibrations in mechanical systems. The characteristic polynomial derived from this equation can help find the general solution, which involves finding the roots and hence determining the form of the solution, typically involving exponentials and sinusoidal functions. To solve equations like this, it's vital to check for common mistakes, such as incorrectly applying the initial conditions or miscalculating the roots of the characteristic equation. Practicing with different forms and coefficients can also enhance your understanding of similar equations. Approach each step methodically, ensuring each derivative is correctly computed to avoid pitfalls.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy