Question
Upstudy AI Solution
Tutor-Verified Answer
Answer
La derivada de
es
.
Solution
Para resolver el problema, primero identificamos la función dada:
Esto es una función definida por una integral. Vamos a analizarla y calcular su derivada utilizando el teorema fundamental del cálculo.
Paso 1: Derivada de la función
Según el teorema fundamental del cálculo, si
es una función definida por una integral de la forma:
entonces la derivada de
con respecto a
es:
En nuestro caso,
. Por lo tanto, la derivada de
es:
Paso 2: Resumen de resultados
- La función
está definida como la integral de desde 1 hasta . - La derivada de
es:
Si necesitas más información o un cálculo adicional, házmelo saber.
Answered by UpStudy AI and reviewed by a Professional Tutor
Like
error msg


Mind Expander
Did you know that integrals like the one defining
can be found in various fields, from physics to economics? In physics, integrals help calculate quantities like area under a curve, which can represent displacement, work done, or energy constraints. This particular integral, while not yielding a simple function, illustrates the beauty of connecting a function to its area interpretation!
If you find the integral challenging, you’re not alone! A common mistake is attempting to directly evaluate the integral without first understanding its limits and behavior near critical points. Always take a moment to analyze the integrand, and check for common patterns or substitution strategies that might simplify your work. Remember, integrals can sometimes surprise you with their nuances!