QUIZ 2 Sample ANSWER ALL QUESTIONS Q1. FSCE 1993 (ENG MATH 2) and \( y=4 \). ANS 128 of \( \iint_{R} x^{3}+y^{2} d A \quad \) if \( R \) is the region bounded by lines \( y=x, y=-x \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
To solve the double integral \( \iint_{R} (x^{3}+y^{2}) \, dA \) over the region \( R \) defined by the lines \( y = x \), \( y = -x \), and the line \( y = 4 \), we first visualize the region: 1. The lines \( y = x \) and \( y = -x \) create a V-shape, while the line \( y = 4 \) caps the area above these lines. 2. The region of integration \( R \) is thus a triangle with vertices at the points \( (4, 4) \), \( (4, -4) \), and \( (0, 0) \). Now we can set up the limits for the double integral. We can opt to integrate with respect to \( y \) first, where \( y \) goes from \( -x \) to \( x \), and \( x \) goes from \( 0 \) to \( 4 \): \[ \int_{0}^{4} \left( \int_{-x}^{x} (x^{3}+y^{2}) \, dy \right) dx \] Calculating the inner integral: 1. **For \( x^{3} \)**: \[ \int_{-x}^{x} x^{3} \, dy = x^{3} \cdot (x - (-x)) = x^{3} \cdot 2x = 2x^{4} \] 2. **For \( y^{2} \)**: \[ \int_{-x}^{x} y^{2} \, dy = \left[ \frac{y^{3}}{3} \right]_{-x}^{x} = \frac{x^{3}}{3} - \left(-\frac{x^{3}}{3}\right) = \frac{2x^{3}}{3} \] Now compile the inner integral: \[ \int_{-x}^{x} (x^{3}+y^{2}) \, dy = 2x^{4} + \frac{2x^{3}}{3} = 2x^{4} + \frac{2x^{3}}{3} = \frac{6x^{4}}{3} + \frac{2x^{3}}{3} = \frac{6x^{4} + 2x^{3}}{3} \] Next, we integrate this with respect to \( x \): \[ \int_{0}^{4} \frac{6x^{4} + 2x^{3}}{3} \, dx = \frac{1}{3} \left( 6 \int_{0}^{4} x^{4} \, dx + 2 \int_{0}^{4} x^{3} \, dx \right) \] Calculating each integral: 1. **For \( x^{4} \)**: \[ \int_{0}^{4} x^{4} \, dx = \left[ \frac{x^{5}}{5} \right]_{0}^{4} = \frac{4^{5}}{5} = \frac{1024}{5} \] 2. **For \( x^{3} \)**: \[ \int_{0}^{4} x^{3} \, dx = \left[ \frac{x^{4}}{4} \right]_{0}^{4} = \frac{4^{4}}{4} = 256 \] Plugging these back into our equation: \[ = \frac{1}{3} \left( 6 \cdot \frac{1024}{5} + 2 \cdot 256 \right) = \frac{1}{3} \left( \frac{6144}{5} + 512 \right) \] Converting \( 512 \) to fifths: \[ 512 = \frac{2560}{5} \] Finally: \[ = \frac{1}{3} \left( \frac{6144 + 2560}{5} \right) = \frac{1}{3} \left( \frac{8704}{5} \right) = \frac{8704}{15} \] Thus, the final answer is: \[ \iint_{R} (x^{3}+y^{2}) \, dA = \frac{8704}{15} \]