Question
upstudy study bank question image url

16 Encontre \( d y / d x \) e \( d^{2} y / d x^{2} \). Para quais valores de \( t \) a curva ncava para cima? 12. \( x=t^{3}-12 t, \quad y=t^{2}-1 \)

Ask by Stanley Bird. in Brazil
Jan 12,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Para \( -2 < t < 2 \), a curva é côncava para cima.

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Extra Insights

Vamos começar derivando as funções paramétricas. Dado que \( x = t^3 - 12t \) e \( y = t^2 - 1 \), temos: Primeiro, encontramos \( \frac{dy}{dt} \) e \( \frac{dx}{dt} \): \[ \frac{dy}{dt} = 2t \quad \text{e} \quad \frac{dx}{dt} = 3t^2 - 12 \] Agora, para encontrar \( \frac{dy}{dx} \), usamos a regra da cadeia: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{2t}{3t^2 - 12} \] Agora, vamos encontrar \( \frac{d^2y}{dx^2} \). Para isso, precisamos calcular a derivada de \( \frac{dy}{dx} \) em relação a \( t \): \[ \frac{d}{dt} \left(\frac{dy}{dx}\right) = \frac{(3t^2 - 12)(2) - (2t)(6t)}{(3t^2 - 12)^2} \] Simplificando, obtemos: \[ \frac{d}{dt} \left(\frac{dy}{dx}\right) = \frac{6t^2 - 24 - 12t^2}{(3t^2 - 12)^2} = \frac{-6t^2 - 24}{(3t^2 - 12)^2} \] Finalmente, aplicamos a regra da cadeia novamente para encontrar \( \frac{d^2y}{dx^2} \): \[ \frac{d^2y}{dx^2} = \frac{\frac{d}{dt} \left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} = \frac{\frac{-6(t^2 + 4)}{(3t^2 - 12)^2}}{3t^2 - 12} \] Agora, para determinar onde a curva é côncava para cima, analisamos a segunda derivada: \[ \frac{d^2y}{dx^2} > 0 \implies -6(t^2 + 4) < 0 \quad \text{(sempre verdadeiro)} \] Portanto, a curva é sempre côncava para cima, independentemente do valor de \( t \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy