Question

2) \( \lim _{x \rightarrow 0}\left(\frac{x e^{-x}}{3 e^{x}-3}\right) \)

Ask by Peterson Turner. in the United Kingdom
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The limit is \( \frac{1}{3} \) or approximately 0.333.

Solution

Calculate the limit \( \lim_{x\rightarrow 0} \frac{x e^{-x}}{3 e^{x}-3} \). Evaluate the limit by following steps: - step0: Evaluate using L'Hopital's rule: \(\lim _{x\rightarrow 0}\left(\frac{xe^{-x}}{3e^{x}-3}\right)\) - step1: Rewrite the expression: \(\lim _{x\rightarrow 0}\left(\frac{1}{3e^{x}-3}\times xe^{-x}\right)\) - step2: Calculate: \(\lim _{x\rightarrow 0}\left(\frac{1}{3}e^{-x}\right)\) - step3: Calculate: \(\lim _{x\rightarrow 0}\left(\frac{1}{3}\times 1\right)\) - step4: Multiply the terms: \(\lim _{x\rightarrow 0}\left(\frac{1}{3}\right)\) - step5: Calculate: \(\frac{1}{3}\) The limit of \( \lim _{x \rightarrow 0}\left(\frac{x e^{-x}}{3 e^{x}-3}\right) \) is \( \frac{1}{3} \) or approximately 0.333.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To solve the limit \( \lim_{x \rightarrow 0}\left(\frac{x e^{-x}}{3 e^{x}-3}\right) \), we can start by simplifying the expression. First, notice that as \( x \to 0 \), both the numerator and the denominator approach 0, giving us an indeterminate form of type \( \frac{0}{0} \). Thus, we can apply L'Hôpital's rule: 1. Differentiate the numerator and the denominator: - Numerator: \( f(x) = x e^{-x} \) - Using the product rule: \( f'(x) = e^{-x} + x(-e^{-x}) = e^{-x}(1 - x) \) - Denominator: \( g(x) = 3 e^{x} - 3 \) - The derivative is \( g'(x) = 3 e^{x} \) 2. Now we apply L'Hôpital's rule: \[ \lim_{x \to 0} \frac{x e^{-x}}{3 e^{x} - 3} = \lim_{x \to 0} \frac{e^{-x}(1 - x)}{3 e^{x}} \] 3. Substituting \( x = 0 \): \[ = \frac{e^{0}(1 - 0)}{3 e^{0}} = \frac{1}{3} \] Thus, the final result is: \[ \lim _{x \rightarrow 0}\left(\frac{x e^{-x}}{3 e^{x}-3}\right) = \frac{1}{3} \]

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy