Question
upstudy study bank question image url

Culcule las derivatas Ruciciles \( \frac{d f}{d x} \frac{\partial f}{d y} \frac{\partial f}{d z} \) de las siguentes foncion-s \( f(x, y)=\frac{x^{2}+4}{y-3} \)

Ask by Davey Bowman. in Mexico
Dec 05,2024

Real Tutor Solution

Tutor-Verified Answer

Answer

Las derivadas parciales son: - \( \frac{\partial f}{\partial x} = \frac{2x}{y - 3} \) - \( \frac{\partial f}{\partial y} = \frac{-(x^{2} + 4)}{(y - 3)^{2}} \) - \( \frac{\partial f}{\partial z} = 0 \)

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Mind Expander

¡Claro! Para calcular las derivadas \( \frac{d f}{d x} \), \( \frac{\partial f}{d y} \) y \( \frac{\partial f}{d z} \) de la función \( f(x, y) = \frac{x^{2} + 4}{y - 3} \), comencemos con cada una: 1. **Derivada total con respecto a \( x \)**: \[ \frac{d f}{d x} = \frac{2x}{y - 3} \] 2. **Derivada parcial con respecto a \( y \)**: Usamos la regla del cociente: \[ \frac{\partial f}{\partial y} = -\frac{x^{2} + 4}{(y - 3)^{2}} \] 3. **Derivada parcial con respecto a \( z \)**: Como la función no depende de \( z \), la derivada es cero: \[ \frac{\partial f}{\partial z} = 0 \] Resumiendo, tenemos: - \( \frac{d f}{d x} = \frac{2x}{y - 3} \) - \( \frac{\partial f}{\partial y} = -\frac{x^{2} + 4}{(y - 3)^{2}} \) - \( \frac{\partial f}{\partial z} = 0 \)

Related Questions

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy