Question
upstudy study bank question image url

For the vectors \( \mathbf{u}=\langle 3,2,4 \sqrt{3}\rangle \) and \( \mathbf{v}=\langle 1,0,4 \sqrt{3}\rangle \), evaluate the following expressions. \( \begin{array}{lll}\text { a. } 2 \mathbf{u}+3 \mathbf{v} & \text { b. } 4 \mathbf{u}-\mathbf{v} & \text { c. }|\mathbf{u}+2 \mathbf{v}|\end{array} \) \( \begin{array}{l}\text { a. } 2 \mathbf{u}+3 \mathbf{v}= \\ \text { (Type exact answers, using radicals as needed.) }\end{array} \)

Ask by Mejia Peterson. in the United States
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( 2\mathbf{u} + 3\mathbf{v} = \langle 9, 4, 20\sqrt{3} \rangle \)

Solution

To evaluate \( 2\mathbf{u} + 3\mathbf{v} \), follow these steps: Given: \[ \mathbf{u} = \langle 3, 2, 4\sqrt{3} \rangle \] \[ \mathbf{v} = \langle 1, 0, 4\sqrt{3} \rangle \] 1. **Calculate \( 2\mathbf{u} \):** \[ 2\mathbf{u} = 2 \times \langle 3, 2, 4\sqrt{3} \rangle = \langle 6, 4, 8\sqrt{3} \rangle \] 2. **Calculate \( 3\mathbf{v} \):** \[ 3\mathbf{v} = 3 \times \langle 1, 0, 4\sqrt{3} \rangle = \langle 3, 0, 12\sqrt{3} \rangle \] 3. **Add the results:** \[ 2\mathbf{u} + 3\mathbf{v} = \langle 6 + 3, 4 + 0, 8\sqrt{3} + 12\sqrt{3} \rangle = \langle 9, 4, 20\sqrt{3} \rangle \] **Final Answer:** \[ 2\mathbf{u} + 3\mathbf{v} = \langle 9,\; 4,\; 20\,\sqrt{3} \rangle \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

Let's evaluate each expression step by step. **a.** To find \( 2 \mathbf{u} + 3 \mathbf{v} \): First, calculate \( 2 \mathbf{u} \) and \( 3 \mathbf{v} \): \[ 2 \mathbf{u} = 2 \langle 3, 2, 4\sqrt{3} \rangle = \langle 6, 4, 8\sqrt{3} \rangle \] \[ 3 \mathbf{v} = 3 \langle 1, 0, 4\sqrt{3} \rangle = \langle 3, 0, 12\sqrt{3} \rangle \] Now, add the two results together: \[ 2 \mathbf{u} + 3 \mathbf{v} = \langle 6, 4, 8\sqrt{3} \rangle + \langle 3, 0, 12\sqrt{3} \rangle = \langle 6 + 3, 4 + 0, 8\sqrt{3} + 12\sqrt{3} \rangle \] This simplifies to: \[ = \langle 9, 4, 20\sqrt{3} \rangle \] So, \[ \text{a. } 2 \mathbf{u} + 3 \mathbf{v} = \langle 9, 4, 20\sqrt{3} \rangle \] **b.** To find \( 4 \mathbf{u} - \mathbf{v} \): First, calculate \( 4 \mathbf{u} \) and \( \mathbf{v} \): \[ 4 \mathbf{u} = 4 \langle 3, 2, 4\sqrt{3} \rangle = \langle 12, 8, 16\sqrt{3} \rangle \] Now, subtract \( \mathbf{v} \): \[ 4 \mathbf{u} - \mathbf{v} = \langle 12, 8, 16\sqrt{3} \rangle - \langle 1, 0, 4\sqrt{3} \rangle = \langle 12 - 1, 8 - 0, 16\sqrt{3} - 4\sqrt{3} \rangle \] This simplifies to: \[ = \langle 11, 8, 12\sqrt{3} \rangle \] So, \[ \text{b. } 4 \mathbf{u} - \mathbf{v} = \langle 11, 8, 12\sqrt{3} \rangle \] **c.** Now, let's calculate \( |\mathbf{u} + 2 \mathbf{v}| \): First, calculate \( 2 \mathbf{v} \): \[ 2 \mathbf{v} = 2 \langle 1, 0, 4\sqrt{3} \rangle = \langle 2, 0, 8\sqrt{3} \rangle \] Now, add \( \mathbf{u} \) to this: \[ \mathbf{u} + 2 \mathbf{v} = \langle 3, 2, 4\sqrt{3} \rangle + \langle 2, 0, 8\sqrt{3} \rangle = \langle 3 + 2, 2 + 0, 4\sqrt{3} + 8\sqrt{3} \rangle \] This simplifies to: \[ = \langle 5, 2, 12\sqrt{3} \rangle \] Now, find the magnitude: \[ |\mathbf{u} + 2 \mathbf{v}| = \sqrt{5^2 + 2^2 + (12\sqrt{3})^2} = \sqrt{25 + 4 + 432} = \sqrt{461} \] So, \[ \text{c. } |\mathbf{u} + 2 \mathbf{v}| = \sqrt{461} \] Now putting them all together, we have: \[ \text{a. } \langle 9, 4, 20\sqrt{3} \rangle \\ \text{b. } \langle 11, 8, 12\sqrt{3} \rangle \\

Related Questions

Latest Other Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy