Question
upstudy study bank question image url

4) \( y=\sec ^{3} \sqrt{x} \)

Ask by Pena Murray. in Venezuela
Jan 26,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La derivada de \( y = \sec^{3}(\sqrt{x}) \) con respecto a \( x \) es: \[ \frac{dy}{dx} = \frac{3 \sec^{3}(\sqrt{x}) \tan(\sqrt{x})}{2 \sqrt{x}} \]

Solution

Para encontrar la derivada de la función \( y = \sec^{3}(\sqrt{x}) \) con respecto a \( x \), seguiremos los siguientes pasos utilizando la regla de la cadena. ### Paso 1: Identificar las funciones internas Tenemos una función compuesta donde: - La función exterior es \( \sec^{3}(u) \), con \( u = \sqrt{x} \). - La función interna es \( u = \sqrt{x} \). ### Paso 2: Aplicar la regla de la cadena La regla de la cadena nos indica que: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \] ### Paso 3: Calcular \( \frac{dy}{du} \) Derivamos \( y = \sec^{3}(u) \) con respecto a \( u \): \[ \frac{dy}{du} = 3 \sec^{2}(u) \cdot \sec(u) \tan(u) = 3 \sec^{3}(u) \tan(u) \] ### Paso 4: Calcular \( \frac{du}{dx} \) Derivamos \( u = \sqrt{x} \) con respecto a \( x \): \[ \frac{du}{dx} = \frac{1}{2\sqrt{x}} \] ### Paso 5: Combinar los resultados Multiplicamos las dos derivadas obtenidas: \[ \frac{dy}{dx} = 3 \sec^{3}(\sqrt{x}) \tan(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}} = \frac{3}{2} \cdot \frac{\sec^{3}(\sqrt{x}) \tan(\sqrt{x})}{\sqrt{x}} \] ### Resultado Final \[ \frac{dy}{dx} = \frac{3 \sec^{3}(\sqrt{x}) \tan(\sqrt{x})}{2 \sqrt{x}} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

The function \( y = \sec^3 \sqrt{x} \) showcases how the behavior of the secant function, which relates to the angles in a right triangle, morphs with a square root transformation. The secant function itself is the reciprocal of the cosine function, meaning it's defined where \( \cos \) is not zero. As \( x \) increases, \( \sqrt{x} \) changes the input angle, causing \( y \) to oscillate—particularly between asymptotic behaviors as \( x \) approaches the values where \( \cos \) equals zero. For practical applications, you might find this function popping up in areas involving oscillating systems, such as wave mechanics or electrical engineering. For instance, if you were analyzing circuits that involve alternating currents, understanding how these functions behave over different inputs can help predict their power distribution and signal integrity, ensuring your devices run smoothly—most likely with less static!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy