Question
upstudy study bank question image url

The point \( (4,-91) \) is a stationary point on the graph of \( y=x^{3}-2 x^{2}+a x+c \), where \( c \) is a constant. (i) Show that \( a=-32 \). (ii) Determine the value of \( c \). (iii) Find the coordinates of the other stationary point.

Ask by Sherman Olson. in Singapore
Jan 26,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( a = -32 \), \( c = 5 \), and the other stationary point is at \( \left(-\frac{8}{3}, \frac{1543}{27}\right) \).

Solution

To solve the problem, we will follow the steps outlined in the prompt. ### Step 1: Extract Known Conditions We have the function: \[ y = x^3 - 2x^2 + ax + c \] and a stationary point at \( (4, -91) \). A stationary point occurs where the derivative \( \frac{dy}{dx} = 0 \). ### Step 2: Find the Derivative First, we need to find the derivative of the function: \[ \frac{dy}{dx} = 3x^2 - 4x + a \] ### Step 3: Substitute the Stationary Point into the Derivative At the stationary point \( x = 4 \): \[ 3(4)^2 - 4(4) + a = 0 \] Calculating this gives: \[ 3(16) - 16 + a = 0 \\ 48 - 16 + a = 0 \\ 32 + a = 0 \] Thus, we find: \[ a = -32 \] ### Step 4: Show that \( a = -32 \) We have shown that \( a = -32 \). ### Step 5: Determine the Value of \( c \) Next, we substitute the coordinates of the stationary point \( (4, -91) \) into the original function to find \( c \): \[ -91 = (4)^3 - 2(4)^2 + (-32)(4) + c \] Calculating this gives: \[ -91 = 64 - 32 - 128 + c \\ -91 = -96 + c \\ c = -91 + 96 \\ c = 5 \] ### Step 6: Find the Coordinates of the Other Stationary Point Now we have \( a = -32 \) and \( c = 5 \). The function becomes: \[ y = x^3 - 2x^2 - 32x + 5 \] We need to find the stationary points by setting the derivative to zero: \[ 3x^2 - 4x - 32 = 0 \] We will solve this quadratic equation using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 3 \), \( b = -4 \), and \( c = -32 \). Calculating the discriminant: \[ b^2 - 4ac = (-4)^2 - 4(3)(-32) = 16 + 384 = 400 \] Now substituting into the quadratic formula: \[ x = \frac{4 \pm \sqrt{400}}{2(3)} = \frac{4 \pm 20}{6} \] Calculating the two possible values for \( x \): 1. \( x = \frac{24}{6} = 4 \) (the known stationary point) 2. \( x = \frac{-16}{6} = -\frac{8}{3} \) ### Step 7: Find the Corresponding \( y \) Value Now we find the \( y \) value for \( x = -\frac{8}{3} \): \[ y = \left(-\frac{8}{3}\right)^3 - 2\left(-\frac{8}{3}\right)^2 - 32\left(-\frac{8}{3}\right) + 5 \] Calculating each term: 1. \( \left(-\frac{8}{3}\right)^3 = -\frac{512}{27} \) 2. \( -2\left(-\frac{8}{3}\right)^2 = -2 \cdot \frac{64}{9} = -\frac{128}{9} \) 3. \( -32\left(-\frac{8}{3}\right) = \frac{256}{3} \) Now, we need a common denominator to combine these: - The common denominator is 27. Converting each term: 1. \( -\frac{512}{27} \) 2. \( -\frac{128}{9} = -\frac{384}{27} \) 3. \( \frac{256}{3} = \frac{2304}{27} \) 4. \( 5 = \frac{135}{27} \) Now summing these: \[ y = -\frac{512}{27} - \frac{384}{27} + \frac{2304}{27} + \frac{135}{27} = \frac{2304 - 512 - 384 + 135}{27} = \frac{1543}{27} \] ### Final Answer The coordinates of the other stationary point are: \[ \left(-\frac{8}{3}, \frac{1543}{27}\right) \] ### Summary of Results (i) \( a = -32 \) (ii) \( c = 5 \) (iii) The coordinates of the other stationary point are \( \left(-\frac{8}{3}, \frac{1543}{27}\right) \).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To solve for the constants \( a \) and \( c \), and find the coordinates of the other stationary point, we follow these steps: ### (i) Show that \( a = -32 \). First, to find stationary points, we need to differentiate the function \( y = x^3 - 2x^2 + ax + c \). The derivative is: \[ \frac{dy}{dx} = 3x^2 - 4x + a \] At the stationary point \( (4, -91) \), the derivative must equal zero: \[ 3(4)^2 - 4(4) + a = 0 \] \[ 3(16) - 16 + a = 0 \] \[ 48 - 16 + a = 0 \] \[ 32 + a = 0 \] \[ a = -32 \] ### (ii) Determine the value of \( c \). Now we substitute \( x = 4 \) and \( y = -91 \) into the original function to find \( c \): \[ y = 4^3 - 2 \cdot 4^2 + (-32) \cdot 4 + c \] \[ -91 = 64 - 32 - 128 + c \] \[ -91 = -96 + c \] \[ c = -91 + 96 \] \[ c = 5 \] ### (iii) Find the coordinates of the other stationary point. Substituting \( a = -32 \) and \( c = 5 \) back into the original function: \[ y = x^3 - 2x^2 - 32x + 5 \] Setting the derivative equal to zero to find stationary points: \[ 3x^2 - 4x - 32 = 0 \] We can solve this quadratic equation using the quadratic formula where \( A = 3 \), \( B = -4 \), and \( C = -32 \): \[ x = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A} = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 3 \cdot (-32)}}{2 \cdot 3} \] \[ = \frac{4 \pm \sqrt{16 + 384}}{6} \] \[ = \frac{4 \pm \sqrt{400}}{6} \] \[ = \frac{4 \pm 20}{6} \] This gives us: \[ x = \frac{24}{6} = 4 \quad \text{and} \quad x = \frac{-16}{6} = -\frac{8}{3} \] We already have the stationary point \( x = 4 \). Now for the other stationary point: Substituting \( x = -\frac{8}{3} \) back into the equation to find \( y \): \[ y = \left(-\frac{8}{3}\right)^3 - 2\left(-\frac{8}{3}\right)^2 - 32\left(-\frac{8}{3}\right) + 5 \] \[ = -\frac{512}{27} - 2 \cdot \frac{64}{9} + \frac{256}{3} + 5 \] Converting everything to a common denominator of 27: \[ = -\frac{512}{27} - \frac{128}{27} + \frac{4320}{27} + \frac{135}{27} \] \[ = -\frac{512 + 128 - 4320 - 135}{27} \] \[ = \frac{4320 + 512 + 128 + 135}{27} = \frac{4900}{27} \] Thus, the coordinates of the other stationary point are: \[ \left(-\frac{8}{3}, \frac{4900}{27}\right) \]

Related Questions

Multiple Choice Identify the choice that best completes the statement or answers the question. Find any points of discontinuity for the rational function. 1. \( y=\frac{(x-7)(x+2)(x-9)}{(x-5)(x-2)} \) a. \( x=-5, x=-2 \) b. \( x=5, x=2 \) c. \( x=-7, x=2, x=-9 \) d. \( x=7, x=-2, x=9 \) 2. \( y=\frac{(x+7)(x+4)(x+2)}{(x+5)(x-3)} \) a. \( x=-5, x=3 \) b. \( x=7, x=4, x=2 \) c. \( x=-7, x=-4, x=-2 \) d. \( x=5, x=-3 \) 3. \( y=\frac{x+4}{x^{2}+8 x+15} \) a. \( x=-5, x=-3 \) b. \( x=-4 \) c. \( x=-5, x=3 \) d. \( x=5, x=3 \) 4. \( y=\frac{x-3}{x^{2}+3 x-10} \) a. \( x=-5, x=2 \) b. \( x=5, x=-2 \) c. \( x=3 \) d. \( x \) \( =-5, x=-2 \) 6. What are the points of discontinuity? Are they all removable? \[ y=\frac{(x-4)}{x^{2}-13 x+36} \] a. \( x=-9, x=-4, x=8 \); yes b. \( x=1, x=8, x= \) -8; no c. \( x=9, x=4 \); no d. \( x=-9, x=-4 \); no 7. Describe the vertical asymptote(s) and hole(s) for the graph of \( y=\frac{(x-2)(x-5)}{(x-5)(x+2)} \). a. asymptote: \( x=2 \) and hole: \( x=-5 \) b. asymptotes: \( x=-2 \) and hole: \( x=-5 \) c. asymptote: \( x=-2 \) and hole: \( x=5 \) d. asymptote: \( x=-2 \) and hole: \( x=-2 \) a. \( x=-3, x=-8 \); no b. \( x=5, x=-7, x=1 \); no c. \( x=-5, x=7, x=-1 \); yes d. \( x=3, x=8 \); yes 8. Describe the vertical asymptote(s) and hole(s) for the graph of \( y=\frac{x+1}{x^{2}+6 x+5} \). a. asymptote: \( x=-1 \) and hole: \( x=-1 \) b. asymptote: \( x=-1 \) and hole: \( x=-1 \) c. asymptotes: \( x=-1,-1 \) and hole: \( x=-1 \) d. asymptote: -5 and hole: \( x=-1 \), 9. Find the horizontal asymptote of the graph of \( y=\frac{7 x^{6}+7 x+3}{9 x^{5}+7 x+3} \). a. \( y=0 \) b. \( y=\frac{7}{9} \) c. no horizontal asymptote d. \( y=\frac{6}{5} \)
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy