Pregunta
upstudy study bank question image url

The point is a stationary point on the graph of , where is a constant.
(i) Show that .
(ii) Determine the value of .
(iii) Find the coordinates of the other stationary point.

Ask by Sherman Olson. in Singapore
Jan 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

, , and the other stationary point is at .

Solución

To solve the problem, we will follow the steps outlined in the prompt.

Step 1: Extract Known Conditions

We have the function:
and a stationary point at . A stationary point occurs where the derivative .

Step 2: Find the Derivative

First, we need to find the derivative of the function:

Step 3: Substitute the Stationary Point into the Derivative

At the stationary point :
Calculating this gives:
Thus, we find:

Step 4: Show that

We have shown that .

Step 5: Determine the Value of

Next, we substitute the coordinates of the stationary point into the original function to find :
Calculating this gives:

Step 6: Find the Coordinates of the Other Stationary Point

Now we have and . The function becomes:
We need to find the stationary points by setting the derivative to zero:
We will solve this quadratic equation using the quadratic formula:
where , , and .
Calculating the discriminant:
Now substituting into the quadratic formula:
Calculating the two possible values for :
  1. (the known stationary point)

Step 7: Find the Corresponding Value

Now we find the value for :
Calculating each term:
Now, we need a common denominator to combine these:
  • The common denominator is 27.
Converting each term:
Now summing these:

Final Answer

The coordinates of the other stationary point are:

Summary of Results

(i)
(ii)
(iii) The coordinates of the other stationary point are .

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve for the constants and , and find the coordinates of the other stationary point, we follow these steps:

(i) Show that .

First, to find stationary points, we need to differentiate the function .
The derivative is:
At the stationary point , the derivative must equal zero:

(ii) Determine the value of .

Now we substitute and into the original function to find :

(iii) Find the coordinates of the other stationary point.

Substituting and back into the original function:
Setting the derivative equal to zero to find stationary points:
We can solve this quadratic equation using the quadratic formula where , , and :
This gives us:
We already have the stationary point . Now for the other stationary point:
Substituting back into the equation to find :
Converting everything to a common denominator of 27:
Thus, the coordinates of the other stationary point are:

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad