general solution of the differential equation, \( d y / d x+x y=x \), is
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To solve the differential equation \( \frac{dy}{dx} + xy = x \), we can use the method of integrating factors. The integrating factor here is \( e^{\int x \, dx} = e^{\frac{x^2}{2}} \). Multiplying through by this integrating factor and simplifying leads to the general solution: \[ y = e^{-\frac{x^2}{2}} \left( \int x e^{\frac{x^2}{2}} \, dx + C \right) \] Where \( C \) is the constant of integration. This solution represents a family of curves, which can be graphed for better visualization. Ultimately, the solution can be expressed in terms of error functions for more complex integrations, highlighting how even simple differential equations can have sophisticated solutions!