Question
upstudy study bank question image url

(c) \( \lim _{t \rightarrow-3^{+}} \sqrt{t+3} \)

Ask by Rogers Lyons. in Israel
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

הגבול הוא 0.

Solution

כאשר \( t \) מתקרב ל-\( -3 \) מצד ימין (\( t \rightarrow -3^{+} \)), הביטוי בתוך השורש הוא \( t + 3 \). נבחן את הגבול: \[ \lim_{t \rightarrow -3^{+}} \sqrt{t + 3} \] כאשר \( t \) מתקרב ל-\( -3 \) מצד ימין, \( t + 3 \) מתקרב ל-\( 0 \) מצד חיובי. השורש הריבועי של מספר שמתקרב לאפס מצד חיובי גם הוא מתקרב לאפס. לכן, \[ \lim_{t \rightarrow -3^{+}} \sqrt{t + 3} = 0 \] **התשובה:** הגבול הוא 0.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To evaluate \( \lim _{t \rightarrow-3^{+}} \sqrt{t+3} \), we need to understand what happens to \( t + 3 \) as \( t \) approaches \(-3\) from the right (greater than \(-3\)). As \( t \) approaches \(-3\) from the right, \( t + 3 \) approaches \(0\) from the positive side. Thus, \( \sqrt{t + 3} \) approaches \( \sqrt{0} \), which equals \(0\). Therefore, the limit is: \[ \lim _{t \rightarrow-3^{+}} \sqrt{t+3} = 0. \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy